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Covariance Transfor mations for Satellite Flight Dynamics Operations’
David A. Vallado ™

With the advent of using special perturbations for routine space surveillance operations
and the application of covariance information in particular, it's important to understand
different representations of the covariance matrix. Recent studies (Chan 2002, Peterson
2002, and others) have focused on the ever increasing role of covariance in determining
probability for close-approach calculations. However, these data are often given in a for-
mat that's not consistent with every application. For instance, the US Strategic Command
(USSTRATCOM) sometimes provides covariance datafrom numerical differential correc-
tion operations in equinoctia elements, while the state vector is in cartesian coordinates.
To effectively process these data, transformations must be made between the various for-
mats. Most legacy programs contain FORTRAN code to accomplish these operations, and
partial derivatives can be found in some mathematical specifications. This paper docu-
ments the transformations necessary to convert between cartesian, equinoctial, and flight
(spherical) orbital state formats, as well as various inertial and rotating coordinate sys-
tems, and two satellite centered coordinate systems (RSW and NTW, defined later).
Detailed equations are given in the appendix including assumptions and limitations
(resulting from small eccentricity and inclination values). Both position and velocity vec-
tor components are included. A series of test data are presented to show the accuracy of
the transformations. For practical implementation, it's also important to understand how
various satellite orbits will affect the results of the transformations. Several cases are stud-
ied. In addition, how important are the covariance terms in the transformations? Some
transformations assume only the diagonal elements are needed for a particular operation.
To understand this, some example covariance matrices are converted between formats and
propagated into the future.

1. I ntroduction

The covariance matrix in orbit determination is a usually bi-product of a least squares process (or Kalman
filter) and as such, has been present since the first differential corrections were applied to orbital problems.
For many decades though, at least in the operational military operations of Air Force Space Command
(AFSPC), the covariance matrix was little used and often relegated to a set of software routines that were
seldom exercised. During the “reign” of limited analytical theories (SGP4, Hoots 1998 and Vallado, 2001,
651)), the covariance matrix was essentially unavailable”™”. In contrast, owner operator systems sometimes
used covariance information for operations as they had more observational data, precise numerically or
detailed analytically (Draper Semianalytical Satellite Theory, Vallado, 2001, 652-658) generated state vec-
tors, better observability, and generally more confidence in the output.

There are numerous applications for the covariance matrix, and as operations in space become more reg-
ular, the applications increase. Recent studies (Chan 2002, Peterson 2002, and others) have focused on the
increasing role of covariance in determining probability for close-approach calculations. The close-approach
problem is a growing concern among satellite operators because the expense of repairing a satellite, or asis
more often the case of replacing a satellite after a collision, is prohibitive. Space debris is currently an
important topic as there is interest in the piece of debris that separated from the Space Shuttle Columbia
before it disintegrated on reentry on February 1, 2003. In the broader sense of space debris, the issue for
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close-approach becomes one of how to determine whether or not to maneuver if the predictions show a col-
lision. Thisis especially important for the International Space Station (I1SS) as many of its experiments are
designed as “zero-g” and maneuvers impart a certain amount of acceleration to the ISS. The universal
answer isto apply the covariance matrix and determine the probability of the prediction.

Unfortunately, the covariance is often given in aformat that's not consistent with some applications. For
instance, the US Strategic Command (USSTRATCOM) provides some covariance data from special pertur-
bation space surveillance operations in equinoctial elements, while the state vector is in cartesian coordi-
nates'. To effectively process these data, transformations must be made between the two formats. While
most legacy programs contain FORTRAN code to accomplish this transformation, the exact partial deriva-
tives are sometimes difficult to locate. This paper documents the transformations necessary to convert
between cartesian, equinoctial, and flight (spherical) orbital state formats. In addition, coordinate systems
representations are given in inertial (ECI), Mean of Date (MOD), True of Date (TOD), Pseudo Earth Fixed
(PEF), Earth Centered Earth Fixed (ECEF), True egquator-mean equinox (TEME), Radial-transverse-normal
(RSW), and Tangential-velocity-normal (NTW). | do not detail the coordinate system formation, other than
identifying their names, because they can be found in Vallado (2001, Ch. 3—a figure on pg 222 relates
each). Also note that for this paper, | do not differentiate the International Terrestrial Reference Frame
(ITRF) and its different realizations, rather, | group Earth Centered Earth Fixed (ECEF) as a generic group.
Likewise, | use ECI to represent the generic inertial coordinate system (FK5, J2000), but not MOD, TOD or
TEME. Detailed equations are given including assumptions, limitations (resulting from small eccentricity
and inclination values), and some sample test data.

The literature contains a fair amount of information relating to partial derivatives, as well as covariance
matrices and their propagation characteristics (Long 1989, Pon 1973, NORAD 1982, TRACE 1977, etc.). In
the 1980's, Wagner (1987) and Douglas (1987) conducted numerous analyses using the covariance matrix
and orbit determination methods to apply the results to gravity field determination, orbital selection criteria,
and sea-surface determination. Some very useful equations are given by ASTCM (1989), McClain (1992,
79-91), and Cefola and Yurasov (1998) relating the partia derivatives for the direct transformation of equi-
noctial and cartesian elements. Fraiture (1991) discusses covariance matrices, and emphasizes the applica-
tion to attitude control systems. He treats the satellite problem briefly, but does not discuss the actual
implementation. Thus, I’ve tried to consolidate the information for the specific equations, along with some
advice for practical information concerning the implementation of these routines.

Fig. 1 shows various combinations of transformations. Note that there are two types of transformations—
those to different coordinate systems, and those to different orbital state formats. From the figure, one may
wonder why alternate orbital state formats are not shown for some of the coordinate systems, such as ECEF.
This is because when the subsequent transformation is made to classical elements, the classical elements no
longer represent the true orbit of the satellite due to the velocity vector changes in the transformation from
“inertial” to “fixed” coordinates. Thus, a change to these alternate orbit state formats would not yield useful
information.

2. Initial Equations

My first objective was to present detailed equations for the transformation of coordinates. While some ele-
ment sets are unambiguous, other elements sometimes have multiple definitions. For example, the flight
path angleis generally measured from the local horizontal to the velocity vector. However, some centers use
the compliment of this angle. Azimuth is generally measured clockwise from North, but is sometimes
defined from South. Therefore, | specify the basic equations used to define each coordinate system, and each
orbital element set. Thiswill make verifying the resulting transformations and partial derivatives much sim-
pler. Finally, the initial equations also can help identify where singularities can from, such as the eccentricity

*|t'simportant to note that the equinoctial elements are probably the best choice for subsequent propagation of the cova-
riance matrix because their mean element nature makes them act as slow variables, unlike the fast variables in cartesian
elements.
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Figure 1. Covariance Transformations. This figure shows the types and data required to accomplish each trans-
formation. The central point is the cartesian, ECI covariance matrix. To transform to different coordinate
systems, a simple transformation matrix (J) is required. To change the format of the covariance matrix,

the state is needed in the desired format (cartesian, classical, etc.).

and inclination values appearing in the denominator. This hinders the transformation’s ability to handle cer-
tain types of orhits. I've included only a brief description of the coordinate systems as a more detailed
description, including figures, is found in Vallado (2001, Ch. 3). The equations for several common orbital

state formats are as follows.

2.1 Cartesian Elements

The perifocal coordinate system is defined in Vallado (2001, 161) and it liesin the orbital plane and pointsto
perigee. For cartesian transformations, it's used to relate the classical orbital elements to the position and

velocity state vectors.

_9_99_8_(12_ —/\/éSIN(V)
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The transformation from the Geocentric Equatorial Coordinate System (ECI) to the perifocal system is

also needed for the partial derivatives (Vallado, 2001, 173)".

Mok = [ROT3(-2)1[ROTL(—)][ROT3(~w)Tpow = [p—IEJQ—K\K/]?PQW
Vigk = [ROT3(—Q)][ROT1(—i)][ROT3(~w)|Vpow = [%\(,‘V]QPQW

*Notethat | use“1JK” to symbolize the axes of the ECI coordinate system.
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2.2 Classical Elements

Classical elements are determined from position and velocity vectors using the following equations. First,
the energy equation is solved for the semi major axis to find

A= BT
—V2r+2p,

The remaining equations are found following standard practice (Vallado, 2001, 120-121). Notice the mul-
tiple possibilities for some of the relations for inclination (i) and right ascension of the ascending node ().

¢ p
h=ixv h = |
n=Kxh
cos(i) = ’hﬁK SIN(i) = ’rﬁ ©
cos(2) = = cos(Q) = Ny TAN(Q) = h
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There are several choices for the sixth element, either true anomaly (»), mean anomaly (M), Eccentric
anomaly (E), or time since perigee passage (A7). A forward difference approach may be used to go between
true and mean anomaly values. Use the following values.

SIN(E) = SIN(») /1 —¢€? sin(y) = SNCE J1-¢?
1+ ecos(v) and 1-ecos(E)

COS(E) = e+ Ccos(v) cos(») = cos(E)—e
1+ ecos(v) 1—-ecos(E)

2.3 Equinoctial Elements

Equinoctial elements (Broucke and Cefola, 1972) are popular because they do not suffer from the singularity
problems that classical and other elements do. There are numerous “standard” notations for the element
symbols, but I’ ve chosen the set shown below (in addition to some other common symbols). For completely
general applications, amultiplier (f,) is used with the equinoctial elements to specify the direction for exact



retrograde orbits (i = 180°). As such, the f, multiplier is generally included for completeness with equinoctial
elements, however, for our purposes we will assumeit is aways unity, and hence restrict ourselves from pro-
cessing exact retrograde equatorial orbits. Because there are no exact retrograde orbits, this is a reasonable
assumption.

a = k, = ecos(w + Q)

a8y = hy = esIN(w + Q)

= |&
n= 2

L=Ay=Q+w+M = Q+0w+nAt M = E-esIN(E) (3
X = Pe = TAN (lz)sm(ﬂ)
Y = Q. = TAN (lz)cos(ﬂ)

Notice again that there are choices to make when choosing aform of the equationsto usein partial deriv-
ative operations. The reverse process uses the following relations.

1/3
= 2
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4
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w = TAN‘l(%g)—TAN‘l(i)
f

M=Ay=L-w-0
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The direct formulation of cartesian and equinoctial elements may be found in Cefola (1972), Long et a
(1989, 3-65 to 3-68), ASTCM (1989, 20-90 to 20-102), McClain (1992), and Cefola and Yurasov (1998).
Time did not permit inclusion of all the relevant equations.

24 Flight (Spherical) Elements

Because there is some variability in the literature over what constitutes flight parameters, I’ specify them as
geocentric latitude (¢4c), longitude (M), flight-path angle from the local horizontal (1), azimuth (8), posi-
tion magnitude, and vel ocity magnitude. Remember that when you use Earth fixed parameters (latitude and
longitude), the state vectors must be in Earth-fixed (ECEF) coordinates. Spherical parameters use the right
ascension (a;) and declination (6) instead of longitude and latitude, for which the change of coordinate sys-
tem is not necessary. See also Long et a. (1989, 3-42 to 3-44), and O’ Conner (1983, 1-29).
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The azimuth may also be calculated using topocentric coordinate system (SEZ), although this will result
in longer partial derivatives (Vallado, 2001, 250-254). In the following equations, the Earth Orientation
Parameters (EOP) are used (AUT1, AAT, X,, Yp). These represent the UT1 - UTC value, the number of accu-
mulated leap seconds, and the polar motion values, respectively. FK5 and SITE are simply algorithms from
Vallado (2001, 222, 408).
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The reverse process requires first finding the ECEF position vector.

SIN(B) =

r COS(¢h40) COS(N)
"ecer = | rcoS(¢yc) SIN(N)
SIN(6ge)

Remember to convert the vectors back to inertial if the spherical parameter set («, 6) is used.
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To find the velocity vector at this point, you must modify the velocity equation in inertia coordinates
(Vallado, 2001, 247)

SIN(ex) =

r cos(ﬁ)cos(oz)—rS|N(6)cos(a)é—rcos(ﬁ)sm(oz)&

N

Vec T |F cos(8)SIN(a) =T SIN(8) SIN(a)b + F COS(8) COS(ar) e
F SIN(8) + r COS(6)5

Using the flight-path angle from the vertical (¢f,4,) and the azimuth (3),

v(cos(a)(— COS(er) COS(B) SIN(bpay) SIN(B) + COS(Spa) cos(a>) _SIN(B)SIN (¢fpav)sm(a))

<V
1

ECI v(sw(a)(— COS(a) COS(B) SIN(Pfpay) SIN(6) + COS(Pppay) COS(5)) + S|N(B)S|N(¢fpav)cos(a))

V(cos(a) COS(8) SIN(@fpay) T COS(Pipay) SIN(B))

25 Satellite Coordinate Systems

Orbital plane coordinate systems often provide useful information for satellite planners. The terminology is
usually generic, however | distinguish two satellite coordinate systems, each of which liein the orbital plane
with the third axis normal to that plane (W axis). The RSW system moves with the satellite and is sometimes
given the letters RTN (radial, transverse, and normal). The R axis aways points from the Earth’s center
along the radius vector toward the satellite as it moves through the orbit. The Saxis pointsin the direction of
(but not necessarily paralld to) the velocity vector and is perpendicular to the radius vector—an important
distinction. Figure 2 shows this system. The Saxisis usualy not aligned with the velocity vector except for
circular orbits or for elliptical orbits at apogee and perigee. In addition, because the coordinate system is
based on the satellite’s present location, it applies to al orbit types. Radial positions and displacements are
parallel to the position vector (along the R axis). Along-track or transverse displacements are normal to the
position vector (along the S axis). Some confusion may exist with in-track displacements and the NTW
coordinate system which is discussed next. Finally, cross-track positions are normal to the plane defined by
the current position and velocity vectors (along the W axis). These orientations mainly provide reference
points for describing the satellite’s position from a sensor site and are often used to describe orbital errors,
relative positions, and displacements of satellite orbits. Given a state consisting of a position and velocity
vector, the unit vectors and transformation for this coordinate system are as follows:

R=L W= S= WxR
r I Xv (7)

N

K [R:AS:V\Arst

In the NTW system, the T axis is tangentia to the orbit and always points to the velocity vector. The N
axisliesin the orbital plane, normal to the velocity vector, and the W axisis normal to the orbita plane (asin
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Figure 2. Satellite Coor dinate Systems, RSW and NTW. These coordinate systems move with the satellite. The
R axis points to the satellite, the W axis is normal to the orbital plane (and not usually aligned with the K
axis), and the Saxis is normal to the position vector and positive in the direction of the velocity vector.
The Saxis is aligned with the velocity vector only for circular orbits. In the NTW system, the T axisis
always pardlél to the velocity vector. The N axis is normal to the velocity vector and is not aligned with
the radius vector, except for circular orbits, and at apogee and perigee in elliptical orbits.

the RSW system). We define in-track or tangential displacements as deviations along the T axis. In-track
errors are not the same as along-track variations in the RSW system. One way to remember the distinctionis
that the in-track errors are in the direction of the velocity, whereas along-track variations are simply along
the velocity vector. We use this coordinate system to analyze drag effects on the orbit because drag always
acts along the relative velocity vector. Depending on the attitude, this systemis also useful for solar radiation
pressure analyses. The NTW coordinate system has the following unit vectors and transformation.

A ®

3. Transfor mation Details

To transform the covariance matrix between coordinate systems, a simple relationship exists using the trans-
formation of the state between the coordinate systems. For conversions to different orbital format types, the
process involves partial derivatives. | describe both in this section, but have placed the partial derivative
equationsin the appendix due to their length.

We begin by briefly describing the covariance matrix, and its characteristics. The covariance matrix is a
product of the Least Squares process, using observational data taken on the satellite. This process is often
illustrated by a straight line passing through certain observations, or random variables. When we consider
these random variables as vectors, we have amatrix solution. Suppose we have a system in which the obser-
vations arey, the state is x, and we have arbitrary constants, mand b. Using alinear relation,

y =mx+b 9

Recall the definition of the sample mean as the expected value (E) of the random variable x
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i=1

Using Eqg. (10), we can determine the mean of the observations,

y=E(y) = E[mx+b] =mE(X)+b=mXx +b

Recall that the sample variance, ¢, represents the variability of the expected value of each variable about
the sample mean:

02=E{[x-E(X)12} = E{[x—-X]?}
oo N
- 5 -1 a2 (19)
l(é OP(E)E == (% =%)

i=1

Using Eqg. (11), we find the sample variance as follows. It's a square matrix due to the squared term in the
expectation operator (b cancels when we substitute y and y):

Py=EL(Y-)(y-"] = EIM(x =%)(x=%)"mT]

Using properties from linear-error theory gives us
P, = ME[(x —X)(x—%)T]m" (12)

Thisresult isknown as the similarity transformation; it allows us mathematically to describe the covariance
matrix, Py. In addition, m is known as the Jacobian for the transformation and the subscripts indicate the
ending/initial states. This relation is essential for the transformation of covariance matrices.

= mP,m" m, = dy (13)

P =
Y
X ox

y

There are several important mathematical properties that we can use for analysis. First, the Jacobian
matrix is orthogonal. This meansthat the inverseis equal to the transpose, and that its determinant is equal to
unity. The covariance matrix is symmetric, implying that it can be diagonalized (D = BTPB) where D is the
diagonal matrix, and B is an orthogonal matrix related to the eigenvalues of P.

In orbit determination, the covariance matrix results from the normal equations (Vallado, 2001, 693)

X = (ATWA)-IATWDb (14)

where A isthe partial derivative matrix, b is the residual matrix, and W is the weighting matrix. The matrix
inverse, (ATWA)™, is called the covariance matrix, and I’ ve shown the most general case by including the
weighting matrix. Besides providing the best estimate of the state, the | east-squares method also gives us sta-
tistical confidence in the uncertainty of the answers. The covariance matrix, P = (ATWA) ™, contains the esti-
mates of both variances and covariances for the closeness of the fit. The variances, the squares of the
standard deviations, describe the closeness of the “fit”. An example state having three estimated parame-
ters—a, 8, y—gives us a covariance matrix of the form

2
og Pag0a0g HayTa0y

P=(ATWA)L=E(IX=XI") = |us 000, 03 pg050,

Pya0a0y Hyg0p0y 03
where g, is the standard deviation defined in Eq. (11), 0,2 is the variance, pqp IS the correlation coefficient
of a With B (ugy = Beg), @nd so forth.

The diagonal terms are the variances of the estimate of the state parameters. The square roots of the vari-
ances are the sampl e standard deviations for each element of the state space. You should include these values

10



when discussing the results of an estimation cal cul ation because they establish alevel of uncertainty in each
element. AFSPC didn’t use this data for many decades because it was deemed inaccurate when obtained
from sparse data with limited dynamics (SGP4). The covariance may indeed be inaccurate due to poorly
known parameters (noise, biases, and drift) and inadequate propagation techniques used during differential
correction, but these can be fixed. Whatever the fidelity, we can use the covariance matrix to indicate trends,
such as which direction to search if a sensor doesn’'t immediately acquire a satellite. For orbit problems, the
Jacobian assumes the form (where oe are any set of orbital elements)

J.=]9; 93 15
Lt L)oer aoev} (19

oe

31 Orbit State Format Transfor mations

The process of taking the partial derivatives is laborious, but the modern computer is of some assistance.
After the partia derivatives were formed, a check was conducted with MATHEMATICA. The equations are
included in the appendix. Once these equations were programmed, it's relatively straightforward to convert
the covariance matrices from one system to another. Matrix multiplications are used as in the preceding sec-
tion, Eq. (13), although here the Jacobian is formed from the equations given in the appendix (and Eg. (15))
and the covariance is changed with Eq. (13).

Based on the selection of the equation for each partial derivative, certain restrictions exist for the subse-
guent transformations. Most notable are the eccentricity and inclination restrictions. The following guide-
lines are provided based on severa runs to determine the accuracy, and where it degraded to the point that
the routine could no longer be considered accurate.

Notethat if the transformation from cartesian to equinoctial is made directly, therestrictions cited
below (1, 2, 5, 6) are eliminated.

Cartesian to Classical and Classical to Cartesian, and Classical to Equinoctial:

1. If the eccentricity < 0.00001, the orbit is near circular and some of the partial derivatives will
be poorly defined.

2. If the eccentricity < 0.0000001, the orbit is too near circular and the calculations should be

stopped.

3. If the eccentricity > 0.9999, the orbit is near parabolic and some derivatives will be poorly
defined.

4. If the eccentricity > 0.999999, the orbit is too near parabolic and the calculation should be
stopped.

5. If the (inclination < 0.00001°) or (180° — inclination < 0.00001°), the orbit is near equatorial
and some derivatives will be poorly defined.

6. If the (inclination < 0.00000001°) or (180° — inclination < 0.00000001°), the orbit is too near
equatorial. the calculation will be stopped.

Equinoctial to Classical
These transformations require a different test to ensure accuracy.

1 ifla<1x 106, if lagl < 1 x 10°°, the orbit is very circular. some derivatives are poorly
defined and no covariance will be calculated.

2. if x| <0.000001, if [| < 0.000001, the orbit is nearly equatorial. some derivatives are poorly
defined and no covariance will be calculated.

Cartesian to Flight
1 if (r|2+r32) < 0.00001, the orbit is directly over a pole and azimuth is undefined.

11



Flight to Cartesian

1. if sgrt( reci;? + reci;? ) < 0.000001, then the satelliteis directly over the pole and the lon-
gitude is undefined.

3.2 Coordinate System Transformations

For coordinate system transformations, we require just the transformation between the systems. For
instance, if we wished to represent a cartesian covariance (ECI) in MOD, we would need to find the preces-
sion matrix that transforms an ECI state into the MOD state. After finding the precession angles (6, z, ¢), the
complete rotation matrix for transformations from ECI to MOD is

COS(0)Ccos(2) COS({) — SIN(Z) SIN({)  — SIN({) COS(O) COS(2) — SIN(Z) COS({)  —SIN(O) COS(2)
[Precl = |sn(z)cos(0)cos(¢) + SN({)CoS(2) = SIN(2) SIN(E) COS() + COS(2)COS({)  —SIN(B) SIN(Z)
SIN(O) Ccos(¢) —SIN(O)SIN({) Ccos(0)

Using matrix multiplications and a short hand notation where [Prec] and [0] are each 3x3 matrices, recog-
nize this matrix as the Jacobian of the system.
(3] = Prec 0 Poop = [91Peq [T (16)
0 Prec
Additional considerations are the transformations to the PEF and ECEF coordinate systems. These trans-
formations include accounting for rotating coordinate systems and they require extra processing. Recall the
transformation of the velocity vector from ECI to ECEF (Vallado, 2001, 221) with the shorthand for PM =
polar mation, ST = sidereal time, NUT = nutation, PREC = precession, and w ® = Earth rotation rate.

r e = [ST][NUT][PREC]F

P ECI

N

r = [Pm]r

ECEF PEF

Vecer = [F"\"]{[ST][NUT][PRE(:]\?ECI—aeB X ?PEF}

An additional matrix is required to account for the rotation between the coordinate systems. If we cross
the Earth rotation rate vector with the position vector (ry, rj, r) we obtain —jw o + 1) @ . Taking the “J’
and “I” rows from the combined transformation matrix (sidereal time, nutation, and precession), and using
J1(i,j) to represent the terms of this combined matrix,

J; = [ST]INUT][PREC]

J1(2,1) J31(2,2) J,(2,3) (17)
(wr] = wg|-3,(1, 1) =3,(1, 2) =J,(1, 3)
0 0 0

The transformation and conversion to PEF is found as before,

[ = \Jl 0] Poge = [91P [T (18)
wr J;

This process is also used to convert to ECEF, but afinal transformation is required using Eq. (13) and the
polar motion transformation matrix.

When reversing the process (from ECEF), the first step is to convert to PEF using the polar motion
matrixX.
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- |PMT 0 D - TP T
J1 = Poee = [J1Pc eIl
{ 0 PM.I;| PEF ECEF
The additional matrix for rotating coordinate systemsiis,
J; = [PREC]T[NUT]T[sT]T

‘]1(13 2) _\]1(1, 1) 0
(wr] = wg13,(2,2) =3,(2,1) 0 L . i
‘]1(33 2) _\]1(3, 1) 0 F)ECI - [‘]2] PPEF [‘]2] (19)

0, - \Jl o]
wr J;

The satellite coordinate systems are simple transformations from the cartesian state. A variety of tech-
nigues can accomplish this transformation. | use the unit vector approach (Eg. (7) and Eq. (8)) and Eq. (13)
in these formulations.

_Risw o S _n
[J] = 0 PRSW B [‘ﬂ PCart[‘ﬂ

' (20)

IR ST A ST
[J] = 0 Porw = [\ﬂ PCartEﬂ

4, Analysis

The preceding equations were programmed in MATLAB, and many tests were run. The following checks
were performed to test the accuracy of the transformations.

1. Basic Accuracy of the Orbit State Formats Conversions. Input a cartesian covariance. Con-
vert to classical, equinoctial, and flight formats, and then convert back to cartesian. Check the
accuracy of the results with initial starting cartesian covariance, and evaluate the transforma-
tion matrices and their inverses.

2. Basic Accuracy of the Coordinate System Conversions. Take an input cartesian covariance
matrix and convert it to the alternate coordinate systems, and back. Evaluate the accuracy of
the ending and the original covariance. Also examine the inverse of each transformation
matrix with the transformation matrix calculated from the partial derivatives.

3. Satellite Results. Take representative satellite orbits and analyze the performance of the con-
version from equinoctial to cartesian covariance, and back.

4. Covariance Propagation Results. Propagate the covariance using the full covariance (say for
8 days) and compare to propagating just the diagonal covariance using the position and
velocity variances only.

Because several of the transformations use the gravitational parameter, | chose p = 3.986004418 x 104

m3/s?. Meters and meters per second are used as standard units throughout the analysis.
There are avariety of input and outputs used by organizations. Because the covariance matrix is[usually]
symmetric, a common shorthand is to only provide the upper or lower triangular covariance matrix ele-
ments. It's quite important to understand which isin use for a particular problem as the elements of each do
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not line up, and the most common resulting error will be a“singular element on the diagonal” message. The
“number” of each term islisted in the following matrices.

1. 123 456
23 . . . . .78 91011
456 . . . .. 12131415
78910 . . .. . 161718
111213 14 15 . ... . 1920
16 17 18 19 20 21, L2

Some programs also output degrees for individual elements rather than radians. The practice is often
undocumented, but will result in vastly different covariance matrices. Be sure to understand what units, if
any, are implied within a certain program.

Finally, the order of the statesis very important. |’ ve listed certain orbital elementsin a particular order,
and the partial derivatives are in that order too. Changing the order of the state implies a commensurate
change in the order of the covariance partial derivatives, as well as any orbital states that are required for a
transformation. Classical orbital elements are generally consistent (a, e, i, Q, ®, ») with the only exception
being the final element. The choice here is either the true anomaly (»), mean anomaly (M), the eccentric
anomaly (E), or time since periapsis (At). The equinoctial elements present a different case in that several
“standards’ exist. I’ve chosen to use the a, ag, L, n, ), y order. Flight parameters are usually ¢yc, A, ¢pa, B,
r,andv.

4.1 Basic Accuracy Results - Orbit State Formats

The initial starting covariance was chosen as a ssimple diagonal matrix with 1.0 m errors in each position
component and 0.001 m/s errors in each velocity component. In addition, the off-diagonal terms were set to
non-zero values. Because the goal of this section was to test the accuracy of the transformations going to and
from the cartesian form, zero values would have prevented evaluation of changes for the off-diagonal ele-
ments. The 3x3 sub-matrix values were set to include a sense of realism considering the initial accuracy of
the diagonal terms. | used a percentage of the original cartesian covariance to evaluate the accuracy. Finally,
| al'so evaluated the percentage difference between the inverse of the transformation matrix going from, and
coming to the original covariance. This operation checked the accuracy of the partial derivatives. Theinitial
covariance was:

cartesian covariance

X m y m zZ m xdot m/s ydot m/s zdot m/s
1.000000e+000 1.000000e-002 1.000000e-002 1.000000e-004 1.000000e-004 1.000000e-004
1.000000e-002 1.000000e+000 1.000000e-002 1.000000e-004 1.000000e-004 1.000000e-004
1.000000e-002 1.000000e-002 1.000000e+000 1.000000e-004 1.000000e-004 1.000000e-004
1.000000e-004 1.000000e-004 1.000000e-004 1.000000e-006 1.000000e-006 1.000000e-006
1.000000e-004 1.000000e-004 1.000000e-004 1.000000e-006 1.000000e-006 1.000000e-006
1.000000e-004 1.000000e-004 1.000000e-004 1.000000e-006 1.000000e-006 1.000000e-006

The analysis requires a time and state vector (shown below). The following timing data (Earth Orienta-
tion Parameters, EOP, AUT1, AAT, X, Y,) Was also used.
Consider the following state vector and equinoctial covariance.

FIJK =-605.79221660 | -5870.22951108 J +3493.05319896 K km

N
V)jg =-1.56825429 | -3.70234891 J -6.47948395 K km/s
Dec 15, 2000 16:58:50.208

AUT1=0.105970 s, AAT = 32 s, Xp = 0.000000 ", Yy = 0.000000 ", lod = 0.000000 s

From this information, the following orbital state formats were obtained using standard relations from
Section 2.
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p km a km ecc incl deg raan deg argp deg nu deg m deg
coes 6860.7554 6860.7631 0.0010640 97.65184 79.54701 83.86041 65.21303 65.10238

af ag meanlon deg n chi psi
eq -0.0010197 0.0003038 228.5098015 0.0011110 1.1243593 0.2074336
lon deg latgc deg fpa deg az deg magr km magv km/s
flt -75.2475117 30.6218751 0.0553210 -171.0988678 6857.6963605 7.6256489

Using amean anomaly as the final element of the classical covariance, the conversion to classical covari-
ance was as follows.

classical covariance
a m ecc incl rad raan rad argp rad m rad

1.215911e+001 8.212505e-007 1.988270e-007 -1.526735e-007 1.159226e-003 -1.158147e-003
8.212505e-007 8.083254e-014 1.698441e-014 -1.304184e-014 7.796741e-011 -7.787492e-011
1.988270e-007 1.698441e-014 1.040397e-014 5.668433e-015 2.215181e-011 -2.212971e-011
-1.526735e-007 -1.304184e-014 5.668433e-015 1.859767e-014 -1.700668e-011 1.699277e-011
1.159226e-003 7.796741e-011 2.215181e-011 -1.700668e-011 1.202832e-007 -1.201791e-007
-1.158147e-003 -7.787492e-011 -2.212971e-011 1.699277e-011 -1.201791e-007 1.200752e-007
Converting this back to a cartesian format resultsin
cartesian covariance
X m y m zZ m xdot m/s ydot m/s zdot m/s
1.000002e+000 1.000736e-002 1.000196e-002 1.000122e-004 1.000071e-004 1.000163e-004
1.000736e-002 1.000021e+000 1.001068e-002 1.000282e-004 1.000099e-004 1.000424e-004
1.000196e-002 1.001068e-002 9.999736e-001 1.000545e-004 1.000678e-004 1.000442e-004
1.000122e-004 1.000282e-004 1.000545e-004 9.999877e-007 9.999345e-007 1.000029e-006
1.000071e-004 1.00009%e-004 1.000678e-004 9.999345e-007 9.998813e-007 9.999760e-007
1.000163e-004 1.000424e-004 1.000442e-004 1.000029e-006 9.999760e-007 1.000071e-006

Comparing to the original covariance, the following percentage differences were noted. In this analysis,
individual differences, or values below 1x10718 were considered to be negligible. This limit was determined
by a study to evaluate the performance of the cartesian to equinoctial covariance transformation. The goal
was to determine how 1 cm and 1 mm/s errors would translate to an equinoctial covariance. When these ini-
tial variances were input in the cartesian covariance, terms on the order of 1x10716 to 1x10%! were obtained

in the equinoctial result, and hence the tolerance selection of 1x10718.
pct differences if over 1.000000e-018

-0.0002 -0.0736 -0.0196 -0.0122 -0.0071 -0.0163
-0.0736 -0.0021 -0.1068 -0.0282 -0.0099 -0.0424
-0.0196 -0.1068 0.0026 -0.0545 -0.0678 -0.0442
-0.0122 -0.0282 -0.0545 0.0012 0.0065 -0.0029
-0.0071 -0.0099 -0.0678 0.0065 0.0119 0.0024
-0.0163 -0.0424 -0.0442 .0029 .0024 -0.0071

Although the percentages are all quite small, notice that the varlatlons for most of the covariance terms are
larger than those for the variances—a reason for the later analysis of the effect of these covariance terms on
a covariance propagation.

The second test of accuracy was to look at the difference between the inverses of the transformation

matrix. The transformation matrix going from cartesian to classical (ct2cl) was

tm ct2cl
-1.768332e-001 -1.713544e+000 1.019636e+000 -3.703851e+002 -8.744086e+002 -1.530303e+003
-3.261695e-008 -1.166025e-007 -8.128501e-008 -3.315927e-005 -1.553315e-004 -3.295410e-005
7.316107e-008 -1.349752e-008 -9.995027e-009 -1.096404e-004 2.022761e-005 1.497871e-005
1.229425e-007 -2.268173e-008 -1.679601e-008 6.627761e-005 -1.222759e-005 -9.054632e-006
8.613283e-007 -7.860480e-005 1.123284e-004 -4.143953e-002 -6.424291e-002 -2.166397e-001
-8.741531e-007 7.846095e-005 -1.123541e-004 4.141133e-002 6.418390e-002 2.164450e-001

and itsinverse was

tm ct2cl inv
-8.829808e-002 2.551516e+005 3.435083e+006 5.870230e+006 -1.409737e+006 -1.411582e+006
-8.556234e-001 2.472462e+006 -6.337403e+005 -6.057922e+005 -3.323832e+006 -3.332477e+006
5.091348e-001 -1.471227e+006 -4.692898e+005 2.166082e-007 -5.830333e+006 -5.832170e+006
1.142915e-004 -1.269885e+003 -6.371951e+003 3.702349e+003 6.721174e+002 6.739326e+002
2.698205e-004 -7.476387e+003 1.175565e+003 -1.568254e+003 6.524030e+003 6.530521e+003
4.722131e-004 8.010540e+002 8.705152e+002 1.850021e-010 -3.890477e+003 -3.885957e+003

The transformation matrix going from classical to cartesian was

tm cl2ct
-8.829808e-002 2.551516e+005 3.435083e+006 5.870230e+006 -1.409737e+006 -1.411582e+006
-8.556234e-001 2.472462e+006 -6.337403e+005 -6.057922e+005 -3.323832e+006 -3.332476e+006
5.091348e-001 -1.471227e+006 -4.692898e+005 0.000000e+000 -5.830333e+006 -5.832170e+006
1.142915e-004 -1.269885e+003 -6.371951e+003 3.702349e+003 6.721174e+002 6.739326e+002
2.698205e-004 -7.476387e+003 1.175565e+003 -1.568254e+003 6.524030e+003 6.530521e+003
4.722131e-004 8.010540e+002 8.705152e+002 0.000000e+000 -3.890477e+003 -3.885957e+003
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and the percentage difference between the inverse of the transformation going from cartesian to classical,
and the transformation from classical to cartesian was as follows. Natice that the differences occur only

where zero values were in the original matrix. A default of 100% was set in these cases.
pct differences if over 1.000000e-018

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 100.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 100.0000 0.0000 0.0000

The flight' (or spherical) transformation resulted in the followi ng covariance matrices, and accuracy when
converted back to cartesian.

flight covariance
lon rad latgc rad fpa rad az rad r m v m/s

2.865506e-014 3.128972e-016 -4.983945e-015 1.330765e-014 -6.575239e-010 -2.329193e-011
3.128972e-016 2.147976e-014 -2.243944e-014 -1.639682e-015 -9.003905e-010 -3.189516e-011
-4.983945e-015 -2.243944e-014 2.734133e-014 4.342376e-015 3.449826e-009 1.222056e-010
1.330765e-014 -1.639682e-015 4.342376e-015 1.364980e-014 3.439029e-009 1.218231e-010
-6.575239e-010 -9.003905e-010 3.449826e-009 3.439029e-009 9.918921e-001 6.702467e-005
-2.329193e-011 -3.189516e-011 1.222056e-010 1.218231e-010 6.702467e-005 2.374262e-006
cartesian covariance
X m y m zZ m xdot m/s ydot m/s zdot m/s
1.000000e+000 1.000000e-002 1.000000e-002 1.000000e-004 1.000000e-004 1.000000e-004
1.000000e-002 1.000000e+000 1.000000e-002 1.000000e-004 1.000000e-004 1.000000e-004
1.000000e-002 1.000000e-002 1.000000e+000 1.000000e-004 1.000000e-004 1.000000e-004
1.000000e-004 1.000000e-004 1.000000e-004 1.000000e-006 1.000000e-006 1.000000e-006
1.000000e-004 1.000000e-004 1.000000e-004 1.000000e-006 1.000000e-006 1.000000e-006
1.000000e-004 1.000000e-004 1.000000e-004 1.000000e-006 1.000000e-006 1.000000e-006
pct differences if over 1.000000e-018
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
tm ct2fl

1.685560e-007 -1.739454e-008 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000
7.624598e-009 7.388365e-008 1.254870e-007 0.000000e+000 0.000000e+000 0.000000e+000
-2.997654e-008 -7.067772e-008 -1.239758e-007 -1.155823e-005 -1.121921e-004 6.690357e-005
8.599334e-008 -8.885441e-009 -1.874737e-011 -1.278118e-004 2.358006e-005 1.746123e-005
-8.833757e-002 -8.560060e-001 5.093625e-001 0.000000e+000 0.000000e+000 0.000000e+000
0.000000e+000 0.000000e+000 0.000000e+000 -2.056552e-001 -4.855126e-001 -8.496961e-001
tm ct2fl inv
5.870230e+006 3.585696e+005 0.000000e+000 0.000000e+000 -8.833757e-002 0.000000e+000
-6.057922e+005 3.474600e+006 0.000000e+000 0.000000e+000 -8.560060e-001 0.000000e+000
3.446976e-011 5.901405e+006 0.000000e+000 0.000000e+000 5.093625e-001 0.000000e+000
3.702349e+003 -6.651333e+002 -6.721174e+002 -7.432315e+003 -1.994763e-019 -2.056552e-001
-1.568254e+003 -6.445255e+003 -6.524030e+003 1.371192e+003 -1.109613e-019 -4.855126e-001
-7.702471e-014 3.843775e+003 3.890477e+003 1.015379e+003 -1.157357e-019 -8.496961e-001
tm fl2ct

5.870230e+006 3.585696e+005 0.000000e+000 0.000000e+000 -8.833757e-002 0.000000e+000
-6.057922e+005 3.474600e+006 0.000000e+000 0.000000e+000 -8.560060e-001 0.000000e+000
0.000000e+000 5.901405e+006 0.000000e+000 0.000000e+000 5.093625e-001 0.000000e+000
3.702349e+003 -6.651333e+002 -6.721174e+002 -7.432315e+003 0.000000e+000 -2.056552e-001
-1.568254e+003 -6.445255e+003 -6.524030e+003 1.371192e+003 0.000000e+000 -4.855126e-001
0.000000e+000 3.843775e+003 3.890477e+003 1.015379e+003 0.000000e+000 -8.496961e-001
———————— tm accuracy ---------
pct differences if over 1.000000e-018
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
100.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
100.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Although not used as often, this transformation proved to be the best in terms of accuracy.
Using the classical covariance obtained earlier, the equinoctial covariance results were as follows.

equinoctial covariance
af ag meanlon rad n chi psi
1.307401e-013 8.454837e-014 -1.025769e-013 2.767180e-016 -2.243993e-014 -2.467241e-014
8.454837e-014 8.622244e-014 -6.605814e-014 2.301159e-016 -1.730851e-014 -1.900285e-014
-1.025769e-013 -6.605814e-014 1.021784e-013 -2.251061e-016 3.247419e-014 5.462808e-016
2.767180e-016 2.301159e-016 -2.251061e-016 7.173977e-019 -4.709651e-017 -5.180442e-017
-2.243993e-014 -1.730851e-014 3.247419e-014 -4.709651e-017 1.685802e-014 -8.851445e-015
-2.467241e-014 -1.900285e-014 5.462808e-016 -5.180442e-017 -8.851445e-015 2.129877e-014
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classical covariance
a m ecc incl rad raan rad argp rad m rad

1.215911e+001 8.212505e-007 1.988270e-007 -1.526735e-007 1.159226e-003 -1.158147e-003
8.212505e-007 8.083254e-014 1.698441e-014 -1.304184e-014 7.796741e-011 -7.787492e-011
1.988270e-007 1.698441e-014 1.040397e-014 5.668433e-015 2.215181e-011 -2.212971e-011
-1.526735e-007 -1.304184e-014 5.668433e-015 1.859767e-014 -1.700668e-011 1.699277e-011
1.159226e-003 7.796741e-011 2.215181e-011 -1.700668e-011 1.202832e-007 -1.201791e-007
-1.158147e-003 -7.787492e-011 -2.212971e-011 1.699277e-011 -1.201791e-007 1.200752e-007
———————— accuracy ---------
pct differences if over 1.000000e-018
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
tm cl2eq
0.000000e+000 -9.583596e-001 0.000000e+000 -3.038363e-004 -3.038363e-004 0.000000e+000
0.000000e+000 2.855642e-001 0.000000e+000 -1.019681e-003 -1.019681e-003 0.000000e+000
0.000000e+000 0.000000e+000 0.000000e+000 1.000000e+000 1.000000e+000 1.000000e+000
-2.429009e-010 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000
0.000000e+000 0.000000e+000 1.134461e+000 2.074336e-001 0.000000e+000 0.000000e+000
0.000000e+000 0.000000e+000 2.092973e-001 -1.124359e+000 0.000000e+000 0.000000e+000
tm cl2eq inv
0.000000e+000 0.000000e+000 0.000000e+000 -4.116906e+009 0.000000e+000 0.000000e+000
-9.583596e-001 2.855642e-001 3.419896e-020 0.000000e+000 -2.798202e-021 1.516718e-020
0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 8.524607e-001 1.572709e-001
0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 1.586839e-001 -8.601197e-001
-2.683910e+002 -9.007260e+002 -2.081668e-017 0.000000e+000 -1.586839e-001 8.601197e-001
2.683910e+002 9.007260e+002 1.000000e+000 0.000000e+000 8.221029%9e-018 -4.456071e-017
tm eqg2cl
0.000000e+000 0.000000e+000 0.000000e+000 -4.116906e+009 0.000000e+000 0.000000e+000
-9.583596e-001 2.855642e-001 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000
0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 8.524607e-001 1.572709e-001
0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 1.586839%9e-001 -8.601197e-001
-2.683910e+002 -9.007260e+002 0.000000e+000 0.000000e+000 -1.586839e-001 8.601197e-001
2.683910e+002 9.007260e+002 1.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000
———————— accuracy tm ---------
pct differences if over 1.000000e-018
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 100.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 100.0000 100.0000

4.2 Basic Accuracy - Coordinate System Results

In this step, | calculated the covariance in different coordinate systems. For consistency, | used the sameini-
tial state and cartesian covariance data from Section 4.1, but | changed the EOP data dightly to permit an
evaluation of the ECEF and PEF transformations.

AUT1=0.1032220 s, AAT = 32 s, Xp = -0.080171 ", yp = 0.361253 ", lod = 0.000745 s

Notice that because each of these transformations results from the multiplication of orthogonal matrices
(and not partial derivatives as in the previous section), the inverse and the transpose of the transformations
will be equal (R" = R™Y). This property was checked with each step and found to be true. Each coordinate
system contains information of the state in that coordinate system, and the resulting covariance. The percent-
age differences were calculated as before, and all were 0.0 (above the 1x1018 threshol d). Note that for the
PEF, ECEF and TEME coordinate systems, the kinematic terms for the apparent sidereal time were not used
(Vallado, 2001, 219).

cartesian covariance in MOD

x m y m z m xdot m/s ydot m/s zdot m/s

eci-mod -604.8616829 -5870.3589279 3492.9969618 v -1.566860729 -3.702684048 -6.479629582
cartesian covariance in MOD

X m y m z m xdot m/s ydot m/s zdot m/s

.999939e-001
.999070e-003
.997861e-003
.993866e-005
.999070e-005
.997861e-005

.999070e-003
.000004e+000
.000307e-002
.999070e-005
.000428e-004
.000307e-004

.997861e-003
.000307e-002
.000002e+000
.997861e-005
.000307e-004
.000186e-004

.993866e-005
.999070e-005
.997861e-005
.993866e-007
.999070e-007
.997861e-007

.999070e-005
.000428e-004
.000307e-004
.999070e-007
.000428e-006
.000307e-006

.997861e-005
.000307e-004
.000186e-004
.997861e-007
.000307e-006
.000186e-006
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transformation

matrix

1.000000e+000 -2.137966e-004 -9.290377e-005 0.000000e+000 0
2.137966e-004 1.000000e+000 -9.931272e-009 0.000000e+000 0
9.290377e-005 -9.931239e-009 1.000000e+000 0.000000e+000 0
0.000000e+000 0.000000e+000 0.000000e+000 1.000000e+000 -2
0.000000e+000 0.000000e+000 0.000000e+000 2.137966e-004 1
0.000000e+000 0.000000e+000 0.000000e+000 9.290377e-005 -9
cartesian covariance in TOD
X m vy m zZ m xdot m/s

eci-tod -605.1838381 -5870.2615478
cartesian covariance in TOD

3493.1048160 v -1.567342331

X m y m z m xdot m/s
9.999960e-001 9.999542e-003 9.998451e-003 9.995987e-005 9
9.999542e-003 1.000003e+000 1.000201e-002 9.999542e-005 1
9.998451e-003 1.000201e-002 1.000001e+000 9.998451e-005 1
9.995987e-005 9.999542e-005 9.998451e-005 9.995987e-007 9
9.999542e-005 1.000310e-004 1.000201e-004 9.999542e-007 1
9.998451e-005 1.000201e-004 1.000092e-004 9.998451e-007 1

————— transformation matrix
1.000000e+000 -1.398390e-004 -6.083941e-005 0.000000e+000 0.
1.398399e-004 1.000000e+000 1.506393e-005 0.000000e+000 0.
6.083730e-005 -1.507244e-005 1.000000e+000 0.000000e+000 0.
0.000000e+000 0.000000e+000 0.000000e+000 1.000000e+000 ~-1.
0.000000e+000 0.000000e+000 0.000000e+000 1.398399e-004 1.
0.000000e+000 0.000000e+000 0.000000e+000 6.083730e-005 ~-1.
cartesian covariance in PEF
without 2 extra ast terms
X m y m z m xdot m/s
eci-pef 1502.7504376 -5706.8344325 3493.1048160 v -0.577822427
cartesian covariance in PEF

X m y m z m xdot m/s
9.934002e-001 7.512598e-003 5.831364e-003 3.400170e-005 7
7.512598e-003 1.006599e+000 1.288427e-002 7.512605e-005 1
5.831364e-003 1.288427e-002 1.000001e+000 5.831364e-005 1
3.400170e-005 7.512605e-005 5.831364e-005 3.400170e-007 7
7.512591e-005 1.659892e-004 1.288427e-004 7.512598e-007 1
5.831364e-005 1.288427e-004 1.000092e-004 5.831364e-007 1

————— transformation matrix
9.357735e-001 -3.526016e-001 -6.224450e-005 0.000000e+000 0
3.526016e-001 9.357735e-001 -7.346940e-006 0.000000e+000 0
6.083730e-005 -1.507244e-005 1.000000e+000 0.000000e+000 0
2.571211e-011 6.823768e-011 -5.357473e-016 9.357735e-001 -3
-6.823768e-011 2.571211e-011 4.538940e-015 3.526016e-001 9
0.000000e+000 0.000000e+000 0.000000e+000 6.083730e-005 -1
cartesian covariance in ECEF
without 2 extra ast terms
X m y m z m xdot m/s
eci-ecef 1502.7490799 -5706.8405503 3493.0954051 v -0.577819908
cartesian covariance in ECEF

X m y m z m xdot m/s
9.934002e-001 7.512583e-003 5.831375e-003 3.400165e-005 7
7.512583e-003 1.006599e+000 1.288428e-002 7.512590e-005 1
5.831375e-003 1.288428e-002 1.000001e+000 5.831375e-005 1
3.400165e-005 7.512590e-005 5.831375e-005 3.400165e-007 7
7.512575e-005 1.659887e-004 1.288428e-004 7.512583e-007 1
5.831375e-005 1.288428e-004 1.000096e-004 5.831375e-007 1

————— transformation matrix
1.000000e+000 -6.807357e-013 -3.886800e-007 0.000000e+000 0
0.000000e+000 1.000000e+000 -1.751404e-006 0.000000e+000 0
3.886800e-007 1.751404e-006 1.000000e+000 0.000000e+000 0
0.000000e+000 0.000000e+000 0.000000e+000 1.000000e+000 -6
0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 1
0.000000e+000 0.000000e+000 0.000000e+000 3.886800e-007 1
cartesian covariance in TEME
order 4 terms 0 nutation option a
X m y m z m xdot m/s
eci-teme -604.7497358 -5870.3065145 3493.1044297 v -1.567068394
cartesian covariance in TEME

X m y m z m xdot m/s
1.000001e+000 1.000047e-002 9.999850e-003 1.000064e-004 1
1.000047e-002 1.000000e+000 9.999679e-003 1.000047e-004 1
9.999850e-003 9.999679e-003 9.999991e-001 9.999850e-005 9
1.000064e-004 1.000047e-004 9.999850e-005 1.000064e-006 1
1.000047e-004 1.000030e-004 9.999679e-005 1.000047e-006 1
9.999850e-005 9.999679e-005 9.999059e-005 9.999850e-007 9
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.000000e+000
.000000e+000
.000000e+000
.137966e-004
.000000e+000
.931239%e-009

ydot m/s
-3.702665784

ydot m/s

.999542e-005
.000310e-004
.000201e-004
.999542e-007
.000310e-006
.000201e-006

000000e+000
000000e+000
000000e+000
398390e-004
000000e+000
507244e-005

ydot

ydot m/s

.512591e-005
.659892e-004
.288427e-004
.512598e-007
.659891e-006
.288427e-006

.000000e+000
.000000e+000
.000000e+000
.526016e-001
.357735e-001
.507244e-005

ydot

ydot m/s

.512575e-005
.659887e-004
.288428e-004
.512583e-007
.659887e-006
.288428e-006

.000000e+000
.000000e+000
.000000e+000
.807357e-013
.000000e+000
.751404e-006

ydot

ydot m/s

.000047e-004
.000030e-004
.999679e-005
.000047e-006
.000030e-006
.999679e-007

m/s
-4.127063788

m/s
-4.127052440

m/s
-3.702781274
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.000000e+000
.000000e+000
.000000e+000
.290377e-005
.931272e-009
.000000e+000

zdot m/s
6.479523542

zdot m/s

.998451e-005
.000201e-004
.000092e-004
.998451e-007
.000201e-006
.000092e-006

.000000e+000
.000000e+000
.000000e+000
.083941e-005
.506393e-005
.000000e+000

zdot m/s
6.479523542

zdot m/s

.831364e-005
.288427e-004
.000092e-004
.831364e-007
.288427e-006
.000092e-006

.000000e+000
.000000e+000
.000000e+000
.224450e-005
.346940e-006
.000000e+000

zdot m/s
6.479530995

zdot m/s

.831375e-005
.288428e-004
.000096e-004
.831375e-007
.288428e-006
.000096e-006

.000000e+000
.000000e+000
.000000e+000
.886800e-007
.751404e-006
.000000e+000

zdot m/s
6.479523803

zdot m/s

.999850e-005
.999679e-005
.999059e-005
.999850e-007
.999679e-007
.999059e-007



————— transformation matrix

1.000000e+000 -4.333859e-015 3.204892e-005 0.000000e+000 0.000000e+000 0.000000e+000
-4.808905e-010 1.000000e+000 1.500502e-005 0.000000e+000 0.000000e+000 0.000000e+000
-3.204892e-005 -1.500502e-005 1.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000
0.000000e+000 0.000000e+000 0.000000e+000 1.000000e+000 -4.333859e-015 3.204892e-005
0.000000e+000 0.000000e+000 0.000000e+000 -4.808905e-010 1.000000e+000 1.500502e-005
0.000000e+000 0.000000e+000 0.000000e+000 -3.204892e-005 -1.500502e-005 1.000000e+000
cartesian covariance in RSW
X m vy m z m xdot m/s ydot m/s zdot m/s
eci-rsw 6857.6963605 0.0000000 0.0000000 v 0.007362813 7.625645351 0.000000000
cartesian covariance in RSW
X m y m z m xdot m/s ydot m/s zdot m/s

9.918921e-001 6.700644e-003 -2.878187e-003 1.892086e-005 6.700644e-005 -2.878187e-005

6.700644e-003 1.013730e+000 -1.019283e-002 6.700644e-005 2.372970e-004 -1.019283e-004

-2.878187e-003 -1.019283e-002 9.943782e-001 -2.878187e-005 -1.019283e-004 4.378217e-005

1.892086e-005 6.700644e-005 -2.878187e-005 1.892086e-007 6.700644e-007 -2.878187e-007

6.700644e-005 2.372970e-004 -1.019283e-004 6.700644e-007 2.372970e-006 -1.019283e-006

-2.878187e-005 -1.019283e-004 4.378217e-005 -2.878187e-007 -1.019283e-006 4.378217e-007
————— transformation matrix

-8.833757e-002 -8.560060e-001 5.093625e-001 0.000000e+000 0.000000e+000 0.000000e+000
-2.055700e-001 -4.846864e-001 -8.501883e-001 0.000000e+000 0.000000e+000 0.000000e+000
9.746473e-001 -1.798132e-001 -1.331531e-001 0.000000e+000 0.000000e+000 0.000000e+000
0.000000e+000 0.000000e+000 0.000000e+000 -8.833757e-002 -8.560060e-001 5.093625e-001
0.000000e+000 0.000000e+000 0.000000e+000 -2.055700e-001 -4.846864e-001 -8.501883e-001
0.000000e+000 0.000000e+000 0.000000e+000 9.746473e-001 -1.798132e-001 -1.331531e-001
cartesian covariance in NTW
x m y m z m xdot m/s ydot m/s zdot m/s
eci-ntw 6857.6931640 6.6213296 0.0000000 v 0.000000000 7.625648905 0.000000000
cartesian covariance in NTW
X m y m zZ m xdot m/s ydot m/s zdot m/s

9.918792e-001 6.679546e-003 -2.868345e-003 1.879167e-005 6.679546e-005 -2.868345e-005
6.679546e-003 1.013743e+000 -1.019560e-002 6.679546e-005 2.374262e-004 -1.019560e-004
-2.868345e-003 -1.019560e-002 9.943782e-001 -2.868345e-005 -1.019560e-004 4.378217e-005
1.879167e-005 6.679546e-005 -2.868345e-005 1.879167e-007 6.679546e-007 -2.868345e-007
6.679546e-005 2.374262e-004 -1.019560e-004 6.679546e-007 2.374262e-006 -1.019560e-006
-2.868345e-005 -1.019560e-004 4.378217e-005 -2.868345e-007 -1.019560e-006 4.378217e-007
————— transformation matrix
-8.813904e-002 -8.555377e-001 5.101831e-001 0.000000e+000 0.000000e+000 0.000000e+000
-2.056552e-001 -4.855126e-001 -8.496961e-001 0.000000e+000 0.000000e+000 0.000000e+000
9.746473e-001 -1.798132e-001 -1.331531e-001 0.000000e+000 0.000000e+000 0.000000e+000
.000000e+000 0.000000e+000 0.000000e+000 -8.813904e-002 -8.555377e-001 5.101831e-001
.000000e+000 0.000000e+OOO 0.000000e+000 -2.056552e-001 -4.855126e-001 -8.496961e-001
.000000e+000 .000000e+000 0.000000e+000 9.746473e-001 -1.798132e-001 -1.331531e-001

For the RSW and NTW cases, the initial covariance was not changed. Because the original covariance
was spherical, little change is noted in the transformations.

o o o

4.3 Satellite Results

The next test was to examine how the transformations worked for a variety of satellite orbits. A few cases
were chosen—some good and some stressing. The determination of performance was based on taking a
starting covariance in equinoctial elements, converting it to a cartesian format, and then converting back to
equinoctial elements. The tolerance on the accuracy was again set at 1x10718, The NTW covariance provided
estimates on the accuracy of theinitial equinoctial state.

Case 1:

year 2000 mon 12 day 15 hr 16:58:50.208000
dutl 0.103222 s dat 32 s xp -0.080171 " yp 0.361253 " lod 0.000745 s

r -605.7922166 -5870.2295111 3493.0531990 v -1.568254290 -3.702348910 -6.479483950

p km a km ecc incl deg raan deg argp deg nu deg m deg
coes 6860.7554 6860.7631 0.0010640 97.65184 79.54701 79.54701 83.86041 65.21303

af ag meanlon n chi psi
eq -0.0010197 0.0003038 228.5098015 0.0011110 1.1243593 0.2074336
lon deg latgc deg fpa deg az deg magr km magv km/s

flt -75.2475274 30.6217837 0.0553210 -171.0988678 6857.6963605 7.6256489
input equinoctial covariance

af ag meanlon rad n chi psi

8.042040e-013 7.419230e-013 -2.026230e-012
7.419230e-013 2.190440e-012 -3.820340e-012
-2.026230e-012 -3.820340e-012 1.975700e-011
3.787930e-016 1.190100e-015 9.354380e-015
-1.773020e-013 -2.838440e-013 1.473860e-012 -
2.483520e-013 3.679250e-013 -3.015420e-012 -

.787930e-016 -1.773020e-013 2.483520e-013
.190100e-015 -2.838440e-013 3.679250e-013
.354380e-015 1.473860e-012 -3.015420e-012
.562360e-017 -8.860930e-017 -4.569740e-016
.860930e-017 9.677970e-013 -7.230720e-013
.569740e-016 -7.230720e-013 1.841230e-012

B oo WwHE W

19



cartesian covariance
X m y m z m xdot m/s ydot m/s zdot m/s
3.084175e+002 -3.631010e+002 -2.921318e+001 4.186625e-001 -2.143152e-001 -1.198201e-002
-3.631010e+002 5.091000e+002 3.133073e+001 -5.787611le-001 2.476548e-001 1.107400e-002
-2.921318e+001 3.133073e+001 7.692587e+001 -3.834765e-002 2.864365e-002 1.352535e-002
4.186625e-001 -5.787611le-001 -3.834765e-002 6.967966e-004 -3.009157e-004 -1.212316e-005
-2.143152e-001 2.476548e-001 2.864365e-002 -3.009157e-004 1.767174e-004 7.756206e-006
-1.198201e-002 1.107400e-002 1.352535e-002 -1.212316e-005 7.756206e-006 2.765174e-005
equinoctial covariance
af ag meanlon rad n chi psi

8.042040e-013 7.419230e-013 -2.026255e-012 3.787930e-016 -1.773020e-013 2.483520e-013
7.419230e-013 2.190440e-012 -3.820402e-012 1.190100e-015 -2.838440e-013 3.679250e-013
-2.026255e-012 -3.820402e-012 1.975723e-011 9.354346e-015 1.473869e-012 -3.015431e-012
3.787930e-016 1.190100e-015 9.354346e-015 1.562360e-017 -8.860930e-017 -4.569740e-016
-1.773020e-013 -2.838440e-013 1.473869%9e-012 -8.860930e-017 9.677970e-013 -7.230720e-013
2.483520e-013 3.679250e-013 -3.015431e-012 -4.569740e-016 -7.230720e-013 1.841230e-012
———————— accuracy ---------
pct differences if over 1.000000e-018
0.0000 0.0000 -0.0012 0.0000 0.0000 0.0000
0.0000 0.0000 -0.0016 0.0000 0.0000 0.0000
-0.0012 -0.0016 -0.0011 0.0000 -0.0006 -0.0004
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 -0.0006 0.0000 0.0000 0.0000
0.0000 0.0000 -0.0004 0.0000 0.0000 0.0000
ntw 17.582 22.548 8.771 magnitude = 29.907 m
Case 2: This case was a more eccentric orbit (Molnyia).
year 2000 mon 12 day 15 hr 4:59:9.164000
dutl 0.106000 s dat 32 s xp 0.000000 " yp 0.000000 " lod 0.000000 s
r 16091.9939260 -5269.8969797 28254.8221721 v 0.257738430 1.895011970 -2.218700840
p km a km ecc incl deg raan deg argp deg nu deg m deg
coes 11575.1639 25516.4703 0.7391651 62.03466 224.23366 224.23366 255.13311 208.66039
af ag meanlon n chi psi
eq -0.3624854 0.6441811 45.1201104 0.0001549 -0.4194393 -0.4308122
lon deg latgc deg fpa deg az deg magr km magv km/s
flt -177.0731848 59.0695940 -45.2530046 114.1831450 32940.2346481 2.9291864
input equinoctial covariance
af ag meanlon rad n chi psi

3.069620e-010 1.118810e-010 -5.309700e-010 -9.864510e-014 2.133450e-010 -2.026760e-010
1.118810e-010 4.380630e-011 -2.250290e-010 -8.208040e-014 4.787440e-011 -1.027690e-010
-5.309700e-010 -2.250290e-010 2.571060e-009 2.662620e-012 -3.981020e-010 1.182000e-010
-9.864510e-014 -8.208040e-014 2.662620e-012 4.029670e-015 -1.260980e-013 -3.862790e-013
2.133450e-010 4.787440e-011 -3.981020e-010 -1.260980e-013 1.001510e-009 7.458330e-010
-2.026760e-010 -1.027690e-010 1.182000e-010 -3.862790e-013 7.458330e-010 1.208400e-009
cartesian covariance

X m y m z m xdot m/s ydot m/s zdot m/s
9.061815e+007 -6.640345e+006 -2.323751e+006 3.678240e+003 -2.582722e+003 2.596870e+002
-6.640345e+006 6.405947e+005 2.454092e+005 -2.856776e+002 1.772842e+002 -1.082125e+001
-2.323751e+006 2.454092e+005 4.049444e+006 -1.119958e+002 5.525219e+001 -3.173814e+002
3.678240e+003 -2.856776e+002 -1.119958e+002 1.512055e-001 -1.035552e-001 9.999482e-003
-2.582722e+003 1.772842e+002 5.525219e+001 -1.035552e-001 7.459182e-002 -7.771100e-003
2.596870e+002 -1.082125e+001 -3.173814e+002 9.999482e-003 -7.771100e-003 2.834448e-002

equinoctial covariance
af ag meanlon rad n chi psi

6.833355e-010 4.513370e-010 -1.306110e-009 -4.824364e-013 4.639489e-010 -1.970763e-010
4.513370e-010 3.066603e-010 -8.593925e-010 -2.980426e-013 2.742721e-010 -1.827452e-010
-1.306110e-009 -8.593925e-010 4.070660e-009 3.258402e-012 -9.147807e-010 2.337891e-010
-4.824364e-013 -2.980426e-013 3.258402e-012 4.029670e-015 -3.827680e-013 -1.363848e-013
4.639489e-010 2.742721e-010 -9.147807e-010 -3.827680e-013 1.168368e-009 7.502976e-010
-1.970763e-010 -1.827452e-010 2.337891e-010 -1.363848e-013 7.502976e-010 1.041542e-009

———————— accuracy ---------

pct differences if over 1.000000e-018
-122.6124 -303.4081 -145.9857 -389.0628 -117.4641 2.7629
-303.4081 -600.0371 -281.9030 -263.1105 -472.8994 -77.8213
-145.9857 -281.9030 -58.3262 -22.3758 -129.7855 -97.7911
-389.0628 -263.1105 -22.3758 0.0000 -203.5481 64.6927
-117.4641 -472.8994 -129.7855 -203.5481 -16.6607 -0.5986

2.7629 -77.8213 -97.7911 64.6927 -0.5986 13.8082
ntw 31.980 108.976 17.301 magnitude = 114.881 m

This particular case presents some interesting questions concerning the transformations. Admittedly, the
values are small by themselves, but remember that the covariance matrices are the product of a differential
correction process. Because covariance matrices come from imperfect observations and a differential correc-
tion process that tries to find the ‘best” fit, it's possible that the resulting covariance matrix can be inconsis-
tent when processed through a series of transformations.
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Case 3: Thisorbit was aretrograde orbit.

year 2000 mon 12 day 14 hr 5:25:3.461000
dutl 0.105970 s dat 32 s xp 0.000000 " yp 0.000000 " lod 0.000000 s
r 4364.5152493 4748.1760294 2430.2042765 v 5.879624140 -4.102949440 -2.535278190
p km a km ecc incl deg raan deg argp deg nu deg m deg
coes 6891.6486 6891.6495 0.0003655 150.96470 184.66064 184.66064 34.72333 98.68199
af ag meanlon n chi psi
eq -0.0002825 -0.0002319 318.0245529 0.0011035 -0.3137868 -3.8490362
lon deg latgc deg fpa deg az deg magr km magv km/s
flt -117.0362246 20.6487723 0.0207039 -110.8793408 6892.0288589 7.6047229
input equinoctial covariance
af ag meanlon rad n chi psi
4.689140e-011 1.600900e-011 1.647310e-010 -4.381410e-016 -1.411950e-010 1.099990e-011
1.600900e-011 1.068810e-011 6.397320e-011 6.531240e-016 -5.605540e-011 2.560990e-011
1.647310e-010 6.397320e-011 6.713360e-010 1.044550e-014 -6.375070e-010 9.405540e-011
-4.381410e-016 6.531240e-016 1.044550e-014 2.108970e-017 1.592720e-014 1.030810e-014
-1.411950e-010 -5.605540e-011 -6.375070e-010 1.592720e-014 7.598440e-010 -1.054370e-010
1.099990e-011 2.560990e-011 9.405540e-011 1.030810e-014 -1.054370e-010 1.864720e-010

cartesian covariance

X m y m zZ m xdot m/s ydot m/s zdot m/s
1.020635e+003 -2.913050e+003 -2.668700e+002 4.248847e+000 -9.381776e-001 -2.402350e-001
-2.913050e+003 1.187780e+004 1.114968e+003 -1.807213e+001 2.943803e+000 1.387416e+000
-2.668700e+002 1.114968e+003 2.993203e+002 -1.780953e+000 3.324118e-001 2.454211e-001
4.248847e+000 -1.807213e+001 -1.780953e+000 2.789553e-002 -4.389358e-003 -2.334968e-003
-9.381776e-001 2.943803e+000 3.324118e-001 -4.389358e-003 9.388165e-004 2.724837e-004
-2.402350e-001 1.387416e+000 2.454211e-001 -2.334968e-003 2.724837e-004 5.001989e-004
equinoctial covariance
af ag meanlon rad n chi psi
4.685739%9e-011 1.602275e-011 9.135764e-011 -4.363349e-016 1.410191e-010 -1.201412e-011
1.602275e-011 1.070507e-011 3.399642e-011 6.509239e-016 5.957670e-011 1.619163e-011
9.135764e-011 3.399642e-011 2.126508e-010 1.823300e-014 2.428233e-010 -7.647685e-012
-4.363349e-016 6.509239e-016 1.823300e-014 2.108970e-017 -1.404728e-014 1.275172e-014
1.410191e-010 5.957670e-011 2.428233e-010 -1.404728e-014 7.785063e-010 8.261788e-012
-1.201412e-011 1.619163e-011 -7.647685e-012 1.275172e-014 8.261788e-012 1.678097e-010
———————— accuracy ---------
pct differences if over 1.000000e-018
0.0725 -0.0859 44.5413 0.4122 199.8755 209.2203
-0.0859 -0.1588 46.8583 0.3369 206.2818 36.7759
44.5413 46.8583 68.3242 -74.5536 138.0895 108.1310
0.4122 0.3369 -74.5536 0.0000 188.1968 -23.7059
199.8755 206.2818 138.0895 188.1968 -2.4561 107.8358
209.2203 36.7759 108.1310 -23.7059 107.8358 10.0081
ntw 6212.244 7257.188 2012.323 magnitude = 9762.591 m

By plotting the results (Fig. 3) of several runs against the error in the resulting transformation (equinoctial
to cartesian, and back to equinoctial), it was hoped to determine a correlation with either the inclination or
the eccentricity. Unfortunately, this proved less than decisive. The inclinations that were available from the
data were not near the difficult regions of 0.0° and 180.0°, so it was not expected that this would reveal
much—and it didn’'t! The eccentricity was clearly a factor as it got larger, but there was till a modest
amount of dispersion within the data of a particular satellite. It's possible, that a correlation could be
observed with additional data. However, this volume of data was not available for this study.

4.4

The last test involved propagating the covariance matrices for a period of 8 days. Because the largest differ-
ences in the transformations occurred with the covariance terms, | propagated both the full covariance, as
well as just the diagonal forms. To accomplish the propagation, | used the Raytheon/Geodynamics TRACE
orbit determination program. This program has the “usual” force models, integrator options, as well as the
ability to perform covariance analyses.

The first step was to develop a method that would suitably show the behavior of the resulting propaga
tion. | decided to simply use the 3 position components and Root Sum Square (RSS) the results. To ensure
that the error was primarily along the velocity vector direction, | transformed to the orbit plane (NTW coor-
dinate system). This avoided any ambiguity that could exist between a Root Mean Square (RMS) and RSS
value. By plotting the results, | could show simple curves representing the error growth under different con-
ditions.

Covariance Propagation Results
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Figure 3. Eccentricity and Inclination Variations. This figure shows the results from several cases of satellite
data. The eccentricity and inclination are used to plot the maximum error in the covariance transforma-
tion. While nothing stands out definitively, high eccentricity and inclination do produce larger errors.

For thefirst case, | chose the standard cartesian covariance and state. Propagating thisfor 8 daysrevealed
the data shown in Fig 4.

Next, | performed a covariance propagation with the only the diagonal elements, all others being set to
zero. The results are also shown in Fig 4. Notice the large difference in the errors. Many propagation accu-
racy studies are conducted with only the diagonal values. However, these results seem to indicate this is
quite a conservative approach. Alternatively, using the full covariance matrix tended to produce much more
optimistic results. It's often accepted that numerically generated covariances are overly optimistic. In fact,
the covariance matrices are often multiplied by a scalar to make them appear more “redlistic”. The results
here show that the truth is probably somewhere between both approaches, and it’s very likely that the accu-
racy varies even with a given satellite.
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Figure 4. Covariance Propagation. This figure shows the propagation results including the covariance terms, and
just with the diagonal terms. The bottom plot shows just the first two days, while the overall period is
shown on top.

5. Conclusions

The use of covariance continues to increase in space surveillance. With accurate transformations, one can
easily convert between coordinate systems and orbital state formats and choose which ever is best suited for
their needs. This paper has presented an essentially mechanical approach for performing covariance trans-
formations. Classical, cartesian, equinoctial, and flight (spherical) orbit state formats were considered, and a



variety of inertial and rotating coordinate systems were presented. Sample data was given to allow recon-
struction of the results. Accuracies were calculated for avariety of conditions to ensure that the transforma-
tions were correct. While test cases were presented to give an indication of the relative performance, overall
trends did not readily present themselves in the data. Specifically, higher eccentricity values tended to pro-
duce less reliable results, but often, the results were quite good. Data on differing inclination values was not
sufficiently distributed to be able to determine if any trends were evident. Propagation results were shown
for afew conditions of the covariance matrix—complete, and just the diagonal elements. Finaly, full partial
derivative equations are presented in the appendix to let the reader enjoy the lengthy cal culations!

6. Future Work

As often happens when writing a paper, the best ideas come a few days before the deadline for the paper.
This presents the possibility to lay out future work. The present paper lends itself nicely to follow-on work,
summarized bel ow.

1. Complete the analysis of the direct transformation of equinoctial to cartesian covariances.

2. Investigate how a Kalman filter propagates the covariance data.

3. Obtain additional datafor awider variety of satellite orbits to better establish the envelope of
applicability for the transformations.

4. Investigate how the covariance propagates in mean elements, vs the cartesian space results
shown here. Proof of the superior behavior of the mean element characteristics would be a
useful result.

5. Further investigate different satellite orbits to determineif thereisasingle causeto the varied
performance noted in the transformations.
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Appendix

1. Partial Derivative Equations

The literature contains many references to parts of these transformations, but a complete listing is non-
existant. I've combined several resources, in addition to performing numerous derivations from scratch. The
sources include the Goddard Trajectory Determination Program (GTDS) math guide (Long et al, 1989), the
Trajectory Analysis and Orbit Determination Program documentation, (TRACE, 1977), the Space Com-
mand TP-008 (NORAD, 1982), and other works. There are several temporary variables that will simplify
the following partial derivatives.

d=r7-v
h=ixv
n=Kxh
A= hxi

Cartesian to Classical:
These partial derivatives used Eq Eq. (13) and took partials with respect to the state (position and velocity
vectors). The results were as follows (See also TRACE A4-A5). For Cartesian to Classical:

a e i Q

2 2 2 2
2 2ra o lrva_ay Vz_’“lv +2p.dv|_2ptd N oy n —thK+hKvJ) . hfv, V%
arl 3 11 | r r r3 2173 K h2 3 (h|2+h§)1'5 /h|2+h§

2 2 2
9 2rja 4 o MIv 2pdvy 2pdery —hgv, =hvg h hyvy
— Cq|rvT—dvyve— + - c,|-v, +h | —————— Co| —————
ary 3 19 J r r 3 2- 1K h2 3 (h2 +h2)3
g 2rea? 4 , Brv? 2pdve 2pd?r —hyvy+hyy, h2v, +hhyv,
— Cq| rgv®—dvyve— + - c,| hy| ——=—— Col ——%
are  r3 r r r3 h2 (hZ+h%)3

2v,a? 2pr,d —hyry +hyr h2r
o 2 c1[2v|r2v4—2ptrv|—vldz—rldv2+ I/-r| } cz(rJ—hK(MJJ Cy J K
(h?+h

v, 3 h? 23 'K

31"3 2VrJ3a2 Cl[ZVJrZ"A‘ZWVJ—VJdZ—deVZ+ZMrrJd} CZ[_rI +hK[_hKrrlw%<D Cs[mr,;li—Jhr%‘]

% ZerSaz °1[2VKr2"4‘2WVK—VKdz—de"z+ZM: Kd} CZ(_hK(wD Cs[ri::z:—l:)?J
“” le 27" /h21—h,% E 1

The remaining terms are included in the following equation.
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For Classical to Cartesian:
The reverse process is also somewhat tedious due to the lengthy derivatives created by the transformation
from 1JK to PQW (See also Long, 1989, 3-58).

_ : .
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For Classical to Equinoctial:

For this conversion | show two additional rowsfor the anomaly options, true, mean, or time from perigee.

See also TRACE A6-A8.
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d 3M 3
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9 0 0 O 0 0 o SIN(D) cos()
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w
9 0 0 1 0 0 0
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=z c, 0 0 0
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[0At |
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l+e

J—SN(E) ¢, = (1—ecos(E))
e

1 .
1-e2 (1+e)Jl+

)
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In the partials for inclination, I've used the cosine formula, rather than the half-angle version because at
small inclinations, the squared cosine term would have a larger effect on the partial derivative term. Note
that an alternate form for the right ascension of the ascending node is sometimes used.

dx — SIN(i)cos(Q) 9y _ _ SIN(i)cos(Q)
0Q 1+ cos(i) 0Q 1+ cos(i)

For Equinoctial to Classical:

The reverse process finds the partials for the equinoctia to classical transformation. Three columns are
included for the different anomaly types.

a e i Q w M
2 ai 0 0 2 %
Ja [aZ + aZ af+aj af+ajd
i 0 2 0 0 Zaf 2 Z_af 2
aag Jaf2+a§ af+ag af+ag
9 0 0 0 0 0 1
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p) 2 _&)1/3
- - 0 0 0 0 0
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9 2x Y ¥
- 0 0 0
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= 0 0 0
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i v At_
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aaf ll_ez (1—e2) 5 e e
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0ay N-e2 (1-€?)15 e e?
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2 0
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g 0
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0
9 0
oY i
E
TAN| =
¢, = 1 c, = (2) oy = iT—e 1
l+(i’%§)TAN(§) € e(l—ecos(E))cos(%)

For Cartesian to Flight:
The results were for cartesian to Flight,
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For Flight to Cartesian:
For this operation, the vectors must be converted to both ECEF and ECI coordinates since latitude longi-
tude values are inherently in the ECEF frame (Seealso Long et al., 1989, 3-45).
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% —VS|N(B)cos(¢>fpa) cos(0)
9 v(—cos(B)cos(¢fpa) cos(6) + cos(¢>fpa) S|N(6))
IPgc
0 0
a‘bfpa
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e)
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For Cartesian to Spherical:

When performing this conversion, note the similarities to the flight conversions shown earlier. Note,
however, that due to the ECI and ECEF distinctions, the flight path angle and azimuth partials are different
(Seealso Long et a, 1989, 3-41).
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