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In this paper, the non-recursive batch filter has been presented and utilized for satellite orbit
determination. Using the unscented transformation, the non-recursive batch filter is developed without
any traditional linearization process. For the orbit determination system, the range, azimuth, and
elevation angles of the satellite measured from ground tracking stations are used for observations. For
evaluation and verification of the presented batch filter’s performance, the results are compared with
those of the batch least squares filter for various initial errors in position and velocity, measurement
sampling periods and measurement errors. For relatively small initial errors or short measurement
sampling periods or small measurement errors, the accuracy of the orbit determination is similar in
both the filters. Under large initial errors or long measurement sampling periods or large measurement
errors, the presented non-recursive batch filter yields more robust and stable convergence than the
existing batch least squares filter. The non-recursive batch filter based on the unscented transformation
is effectively applicable for highly nonlinear batch estimation problems.

© 2010 Elsevier Masson SAS. All rights reserved.
1. Introduction

There are two general categories of estimators: batch filters and
sequential filters. The batch filter collects all the data for a fixed
period and processes it together non-recursively. The sequential fil-
ter sequentially or recursively updates the state vector to produce
a better estimate at each epoch [9]. The batch filter is commonly
employed for off-line applications such as precise orbit determi-
nation for satellite. On the other hand, in on-line applications, i.e.
on-board navigation of satellite in real time, the sequential filter
is typically used for the estimation algorithm. For the off-line ap-
plications, the batch least squares method has the advantages of
providing state estimation with a smaller error than a sequen-
tial filter like the extended Kalman filter (EKF). The batch filter is
extremely helpful when accuracy is an issue [4]. However, when
a real-time application is required, the EKF needs less memory
storage and processor time than the batch least squares method
because it does not demand iterations [20]. Although the batch
least squares estimation and the EKF are the most widely used for
solving nonlinear parameter estimation problems [2,3,5,9,11,19,20],
they have some flaws due to the linearization process. Typically,
both the methods are applied to nonlinear systems by simply lin-
earizing and approximating all the nonlinear models. For the orbit
determination, the dynamic system is linearized about reference

* Corresponding author.
E-mail address: spark@galaxy.yonsei.ac.kr (S.-Y. Park).
1270-9638/$ – see front matter © 2010 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.ast.2010.03.007
trajectory with the assumption that the reference trajectory is very
close to the true trajectory. This linearization in the batch least
squares filter and the EKF may cause a large error, instability and
divergence in the estimation process when the initial reference tra-
jectory condition is not accurate and the measurement data are
sparse or insufficient [13].

To overcome these problems, a number of algorithms have been
developed, such as the unscented Kalman filter (UKF) [10], parti-
cle filters [6], the exact nonlinear recursive filters [6], and so forth.
In particular, the UKF has been extensively investigated for its use
with various dynamics systems, including determining a satellite
attitude [5] or its orbit [12,13] or the trajectory of ballistic mis-
siles [7]. Such research has shown that the UKF yields superior per-
formance in highly nonlinear situations because the UKF is based
on the unscented transformation which doesn’t contain any tra-
ditional linearization processes or assumptions. This characteristic
makes the UKF insensitive to the uncertainty of the initial guessing
process. However, these approaches are just used for the real-time
sequential or recursive filters, and not for the non-recursive batch
estimations. The motivation of the current research is to develop a
non-recursive batch filter without any traditional linearization pro-
cesses using the unscented transformation.

There are other methods for nonlinear estimation, the so-called
iterative or smoothing filters. To estimate the states and parame-
ters, these filters use the batch set of measurement data for fixed
interval and a combination of two filters. One of the two filters
works forward over the data and the other of which runs back-
ward over the interval [8]. The EKF is usually used to accomplish

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aescte
mailto:spark@galaxy.yonsei.ac.kr
http://dx.doi.org/10.1016/j.ast.2010.03.007


388 E.-S. Park et al. / Aerospace Science and Technology 14 (2010) 387–396
this task. The existing iterative EKF or EKF smoother [1] and other
extension methods for iterative or smoothing principles [15] still
have linearization problems. As alternative methods, smoother al-
gorithms based on the unscented transformation are developed
and utilized for satellite attitude determination [16] and tracking
of a ballistic target [23]. However, these iterative or smoothing
filters process the measurement sequentially because sequential
filters, like EKF or UKF, are used for forward or backward pass pro-
cedures.

The first goal of the current research is to present the alterna-
tive algorithm of the non-recursive batch filter based on the un-
scented transformation, a method for calculating the statistics of a
random variable which undergoes a nonlinear transformation [10].
The proposed algorithm (we call it non-recursive unscented batch
filter) estimates system states and parameters at a chosen epoch
time non-recursively using the batch set of data collected in to-
tal acquisition time, which is different to iterative or smoothing
filters that have a recursive or sequential process for measure-
ment data in forward or backward smoothing. The basic batch
filter based on the UT is presented in our previous research and
it is implemented to the attitude determination of satellite [17].
It shows that the batch filter based on the UT gives a fewer it-
erations for convergence than does the batch least squares filter.
Also, the achieved accuracies obtained from the presented batch
filter are similar or a bit better than those of the batch least
squares filter even though the difference is within 1σ error [17].
The attitude sensors (rate-integrating gyro and three-axis mag-
netometers) can obtain measurement data continuously. However,
the orbit determination system using the measurement of ground
tracking stations is difficult to get continuous measurement data
due to the geometrical relations between satellites and stations. In
other words, the tracks are widely separated and the measurement
data are very sparse. In this condition, the nonlinearity effects are
strengthened. Thus it is very challenged that the performance of
the proposed algorithms can be analyzed in detail using very non-
linear measurements. So, the second goal of the current research
is to apply the non-recursive unscented batch algorithm to the
orbit determination of a low Earth orbiting satellite. The system
dynamic equations consist of the Earth’s geo-potential, the atmo-
spheric drag and the lunar/solar gravitational perturbations. The
range, azimuth and elevation angles of the satellite measured from
ground stations are used for orbit determination. The numerical re-
sults of the non-recursive unscented batch algorithm are compared
with those of the well-known batch least squares estimation, the
non-recursive Gaussian least squares estimation. The characteris-
tics of the non-recursive unscented batch filter are analyzed for
various aspects, including accuracy of the determined orbit, sensi-
tivity to the initial uncertainty, measurement incompleteness and
stability performance in a realistic dynamic system and measure-
ment model.

2. Orbit determination

The orbit determination problem is to estimate accurately the
ephemeris of an orbiting satellite at a chosen epoch. To achieve
this goal, estimations of the state and the model parameters of the
satellite are made based on a sequence of observations. The dy-
namic models of the equations of motion are usually integrated
from a chosen epoch to each observation times to produce pre-
dicted observations. The differences between the predicted obser-
vations and true observations are defined as the observation resid-
uals. Then, components of the state vector at a chosen epoch are
corrected to minimize the observation residuals in a least squares
sense. Thus, solving the orbit determination problem requires [9]:
(i) equations of motion describing the forces acting on the satel-
lite, (ii) the relationship between the observed parameters and
Fig. 1. Geometry of Earth observation of satellite motion [4].

the satellite’s state vector, and (iii) an estimation algorithm. These
steps used in the present paper are described in the next sections.

2.1. Force models

The equations of motion of a satellite are usually described in
an inertial reference frame as being composed of a sum of gravi-
tational, non-gravitational and empirical or un-modeled forces. In
the current research, the equations of motion for an Earth orbiting
satellite are given by

ṙ = v (1)

v̇ = −μ

r3
r + aperturbed = ageo + aSun/Moon + adrag (2)

where r and v are the position and velocity vectors in the iner-
tial frame [20]. The forces (v̇) acting on the satellite consist of the
two-body effect and the addictive perturbing accelerations. ageo is
the geo-potential force due to the gravitational force of the Earth
and can be expressed as a spherical harmonic expansion of the
gradient of the Earth’s solid body distribution. aSun/Moon is the lu-
nar/solar gravitational perturbation, which are usually modeled as
point masses within the Newtonian framework. adrag is the atmo-
spheric drag force described as follows,

adrag = −1

2

C D A

M
ρvrvr (3)

B∗ = C D A

M
(4)

The coefficient of drag, C D , is a dimensionless quantity which re-
flects the satellite’s susceptibility to drag force. The atmospheric
density, ρ , indicates how dense the atmosphere is at the satel-
lite’s altitude. The cross-sectional area, A, is defined to be the area
which is normal to the satellite’s velocity vector. vr is the veloc-
ity vector of the satellite relative to the atmosphere and vr is its
norm. B∗ is the inverse of the ballistic coefficient of the satellite,
defined by the multiplication of the coefficient of drag and the
area-to-mass ratio (A/M). The JGM3 model for geo-potential coef-
ficients [14] (a degree of 10×10), the analytical formulas for the
lunar/solar ephemeris [14] and the Harris–Priester model [14] for
the atmospheric density are used. All the equations of motion are
numerically integrated by the Runge–Kutta fourth-order fixed step
method.

2.2. Measurement model

We consider a ground tracking station that measures a range,
azimuth and elevation of a satellite in orbit. The geometry asso-
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ciated with this observation is shown in Fig. 1. In Fig. 1, ρ is the
slant range vector, r is the radius vector locating the satellite, Rs is
the radius vector locating the ground tracking station, αs and δs

are the right ascension and declination of the satellite, respectively,
θs is the sidereal time of the ground station, λs is the latitude of
the ground tracking station, and φs is the east longitude from the
ground tracking station to the satellite. The fundamental observa-
tion is given by

ρ = r − Rs (5)

In non-rotating equatorial components the vector ρ is given by [4]

ρ =
⎡⎣ x − ‖Rs‖ cos λs cos θs

y − ‖Rs‖ cosλs sin θs

z − ‖Rs‖ sinλs

⎤⎦ (6)

where x, y, and z are the components of the vector r. The ground
tracking station coordinate system (up, east and north) is described
in Fig. 1. The conversion from the inertial to ground tracking sta-
tion coordinate is given by [4][

ρu

ρe

ρn

]
=

[ cosλs 0 sin λs

0 1 0
− sinλs 0 cosλs

][ cos θs sin θs 0
− sin θs cos θs 0

0 0 1

]
ρ (7)

A ground tracking station measures the azimuth (az), elevation (el),
and range (ρ). The measurement equations are given by [4]

ρ =
√

ρ2
u + ρ2

e + ρ2
n (8)

az = tan−1
(

ρe

ρn

)
(9)

el = tan−1
(

ρu√
ρ2

n + ρ2
e

)
(10)

Hence, the measurement data used in the present paper are
azimuth (az), elevation (el) and range (ρ).

3. Estimation algorithms

In this section the batch least squares estimation algorithm is
reviewed and the non-recursive unscented batch filter using the
unscented transformation is proposed for orbit determination. The
basic dynamic and measurement equations for describing estima-
tion algorithms are as follows,

xk+1 = f(xk,wk, tk) (11)

yk = h(xk, tk) + νk (12)

where f is the system function and it is associated with Eqs.
(1)–(2). h is the measurement function and it is composed of
Eqs. (8)–(10). xk is the state vector at time tk with a covariance
of Pk , and yk is the measurement vector. wk and νk are the pro-
cess noise vector and the addictive measurement noise vector,
respectively, which have a zero-mean Gaussian distribution with
covariance of Qk and Rk , respectively. In addition, wk and νk are
uncorrelated.

3.1. The batch least squares estimation

The batch least squares filter selects the estimate of state at a
chosen epoch as the value that minimizes the sum of the squares
of measurement residuals, and it is processed using an entire set
of measurements. So, the measurement function, Eq. (12), is rede-
fined by

ỹk ≡

⎡⎢⎢⎣
y1
y2
...

yN

⎤⎥⎥⎦ ≡

⎡⎢⎢⎣
h(x1)

h(x2)
...

h(xN)

⎤⎥⎥⎦ +

⎡⎢⎢⎣
ν1
ν2
...

νN

⎤⎥⎥⎦ ≡ h̃(xk) + ν̃k (13)

where the subscript notes a chosen epoch tk (t1 � tk � tN ), N is
the number of measurement epochs, the tilde symbols of ỹk
and ν̃k relate to the entire set of each measurement and measure-
ment noise, respectively, and h̃ is the mapping matrix which is
expressed in terms of the state at a chosen epoch tk .

For the orbit determination problem, the practical solution of
the batch least squares is complicated by the fact that h̃, in
Eq. (13), is a highly nonlinear function of the state xk , which makes
it difficult or impossible to get an exact solution [14]. So, by as-
suming a reference orbit is sufficiently close to the unknown true
orbit, in other words, the deviation or difference (	xk) of the two
trajectories is small, the dynamics of the unknown true orbit is
linearized about the assumed reference orbit and given by

	ẋk = Fk	xk (14)

where Fk is the partial derivative of f with respect to the state
vector, and Eq. (13) can be linearized as follows,

	ỹk = H̃k	xk + ṽk (15)

where H̃k is the partial derivative of h̃ with respect to the state
vector.

Then, the nonlinear orbit determination problem can be trans-
formed to the linear problem about the state deviation (	x). When
we wish to estimate the state deviation vector 	xk at reference
time, tk , the best estimate value (	x̂k) of state is expressed by the
normal equation as follows [19],

	x̂k = (
H̃T

k R̃−1
k H̃k + P̄−1

k

)−1(
H̃T

k R̃−1
k 	z̃k + P̄−1

k 	x̄k
)

(16)

P̂k = (
H̃T

k R̃−1
k H̃k + P̄−1

k

)−1
(17)

where 	x̄k and P̄k are a priori calculations of state and covariance
at epoch time tk , and 	x̂k and P̂k are the estimated differen-
tial correction of the state and covariance at the epoch time. The
measurement residual, 	z̃k , is the difference between the actual
measurement and calculated measurement using numerical mod-
els. R̃k is the measurement noise covariance. The subscript k means
that all of the measurement residuals are calculated using the state
at chosen epoch time, tk . The right side of Eqs. (16)–(17) can be
calculated by [19]

H̃T
k R̃−1

k H̃k =
N∑

i=1

(HiΦ i,k)
T R−1

i (HiΦ i,k) (18)

H̃T
k R̃−1

k 	z̃k =
N∑

i=1

(HiΦ i,k)
T R−1

i 	zi (19)

where Hi is the partial derivative of h̃ with respect to the state
vector at time ti,Φ i,k is the state transition matrix from xk to xi ,
	zi is the measurement residual at time ti , and Ri is the measure-
ment noise covariance at time ti . Because the orbit determination
problem is not linear, the state of the initial guess is updated
by iteration. Hence, there must be a standard value to quit the
estimation process. The root mean square (RMS) value of the mea-
surement residual is commonly used to determine the convergence
criterion [20], ε.

RMSnew =
{∑N

i=1 	z̃T
i R̃−1

i 	z̃i
}
,

∣∣∣∣RMSnew − RMSold
∣∣∣∣ < ε (20)
nmeas(N) RMSold
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where nmeas is the number of different types of measurements.
In this subsection, the batch least square estimation pro-

cess is summarized. The main characteristic of the batch least
squares filter is the linearization approximation of nonlinear equa-
tions. The nonlinear system, Eq. (11), and measurement equations,
Eq. (13), are linearized and approximated by Taylor’s series expan-
sion with excluding high order terms. Then the linear equations,
Eqs. (14)–(15), are derived. The linearized equations include the
partial derivatives of system and measurement equations with
respect to the state. So, when the complexities of the nonlin-
ear equations and the number of state are increasing, the partial
derivative calculations are severely complicated.

3.2. Unscented transformation and non-recursive unscented batch filter

In this section, the conventional unscented Kalman filter (UKF)
algorithm is reviewed and the non-recursive unscented batch fil-
ter algorithm using the unscented transformation is introduced.
Because both the filters are all based on the unscented transfor-
mation, the non-recursive unscented batch filter can be explained
from the UKF algorithm. So, the basic UKF process is reviewed
briefly. The basic functions of the system and measurement from
Eqs. (11)–(12) are used for describing algorithms in this section.

The most important feature of the UKF is computing the mean
and the covariance of nonlinearly transformed variables from some
selected variables (sigma points) without a traditional linear ap-
proximation of the nonlinear function [10]. Therefore, the UKF
can calculate the mean and covariance more accurately than the
extended Kalman filter (EKF) method which uses a linear approx-
imation of the nonlinear system. The UKF process starts with the
selection of sigma points, which are the set of points around the
original reference state vector. It is redefined as an augmented
state vector (xa

k) along with noise variables, and the augmented
covariance matrix (Pa

k) on the diagonal is reconstructed by [21]

xa
k =

[
xk
wk

]
, Pa

k =
[

Pk 0
0 Qk

]
(21)

Assuming the initial state and its covariance as x̂a
k (= [xT

k ,0]T )

and P̂a
k , respectively, the set of scaled symmetric sigma points with

the augmented state vector and covariance matrix are constructed
by [21]

χ̂a
0,k = x̂a

k

χ̂a
i,k = x̂a

k + (√
(L + λ)P̂a

k

)
i, i = 1, . . . , L

χ̂a
i,k = x̂a

k − (√
(L + λ)P̂a

k

)
i−L, i = L + 1, . . . ,2L (22)

where χ̂a
k represents the augmented state vector consisting of state

χ̂ x
k and process noise χ̂ w

k , L is the dimension of the augmented
state, and λ (≡ α2(L + κ) − L) is the scaling parameter. The con-
stant α decides the extent of the sigma points, and is usually set to
a small positive value. The secondary scaling parameter κ is gener-

ally set to 3− L. (

√
(L + λ)P̂a

k)i means the ith column of the matrix

square root of the augmented covariance (P̂a
k). The total number of

sigma points is (2L + 1). Each sigma point is propagated to the
next measurement time (tk+1) using the nonlinear function f from
Eq. (11) as follows,

χ̄a
i,k+1 = f

(
χ̂ x

i,k, χ̂
w
i,k, tk

)
, i = 1, . . . ,2L (23)

The measurement vector (γ i,k+1) at each propagated sigma point
(χ̄ x

i,k+1) is also calculated thorough the nonlinear function h from
Eq. (12) as follows,

γ i,k+1 = h
(
χ̄ x , tk+1

)
(24)
i,k+1
If the measurement noise is addictive, the augmented state vector
will be defined by adding only the process noise to the state vec-
tor. This helps the computational speed because of the decrease of
the number of sigma points. The predicted state (x̄k+1) and mea-
surement vector (ȳk+1) and their covariances (P̄k+1, P̄y

k+1) are cal-
culated as a form of the weighted mean of the propagated sigma
points (χ̄ x

i,k+1) and the measurement vector (γ i,k+1) through the
nonlinear functions as follows [21]:

For state,

x̄k+1 =
2L∑

i=0

W (m)
i χ̄ x

i,k+1, i = 1, . . . ,2L (25)

P̄k+1 =
2L∑

i=0

W (c)
i

(
χ̄ x

i,k+1 − x̄k+1
)(

χ̄ x
i,k+1 − x̄k+1

)T
(26)

For measurement,

ȳk+1 =
2L∑

i=0

W (m)
i γ i,k+1 (27)

P̄y
k+1 =

2L∑
i=0

W (c)
i (γ i,k+1 − ȳk+1)(γ i,k+1 − ȳk+1)

T + Rk+1 (28)

and the cross-correlation matrix (P̄xy) of x,y is computed by

P̄xy
k+1 =

2L∑
i=0

W (c)
i

(
χ̄ x

i,k+1 − x̄k+1
)
(γ i,k+1 − ȳk+1)

T (29)

where the weighing factors (W (m)
i , W (c)

i ) for the state and covari-
ance are computed as follows,

W (m)
i =

{
λ

(L+λ)
, i = 0

1
2(L+λ)

, i = 1, . . . ,2L
(30)

W (c)
i =

{
λ

(L+λ)
+ 1 − α2 + β, i = 0

1
2(L+λ)

, i = 1, . . . ,2L
(31)

The third scaling parameter β plays a role in incorporating prior
knowledge of the distribution of x, and β = 2 is known to be op-
timal for the Gaussian distribution. The corrected state (x̂k+1) and
covariance (P̂k+1) of the UKF have the same formulas as the stan-
dard Kalman filter, namely [21],

x̂k+1 = x̄k+1 + Kk+1(ỹk+1 − ȳk+1) (32)

P̂k+1 = P̄k+1 − Kk+1P̄xy
k+1KT

k+1 (33)

where ỹk+1 is the observed measurement vector, and the gain ma-
trix Kk+1 is defined by

Kk+1 = P̄xy
k+1

(
P̄y

k+1

)−1
(34)

Assuming an observation is composed of nmeas different types of
measurements, the dimensions of the measurement matrix (ȳk)
and covariance matrix (P̄y

k ) in Eqs. (27)–(28) are nmeas × 1 and
nmeas × nmeas , respectively. In Eqs. (29) and (34), the dimensions
of the cross-correlation matrix (P̄xy

k ) and gain matrix (Kk) are the
same as L ×nmeas . A batch formulation provides an estimate of the
state at a chosen epoch using a set of measurement data. The se-
quential processor, on the other hand, provides an estimate of the
state at each measurement time based on observations up to that
time. Although there are distinct differences in both the methods,
there are also similarities between the two methods. In sequen-
tial formulation without process noise, a mathematical equivalence
can be shown between batch and sequential algorithms [19]; given
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the same measurement data set, both the algorithms produce the
same estimates when the estimates are mapped to the same times.
In the extended form of the sequential algorithm, where the ref-
erence orbit is updated at each measurement time, the algorithms
are not equivalent, but numerical experiments have shown a very
close agreement [19]. Hence, the conventional UKF formulations
are very helpful to construct the non-recursive unscented batch
filter developed in the current study.

The non-recursive unscented batch filter for orbit determination
is proposed as follows. Ordinarily, the process noise is not consid-
ered in the batch process [6] because the batch process obtains
convergence by iterations without the process noise compensa-
tion. In addition, the process noise makes the calculation slower
and complicated due to the increase of the dimensions of the nor-
mal matrix. Additionally, if the measurement noise is assumed to
be addictive, the algorithm can be derived from a non-augmented
UKF. So, Eq. (21) is expressed by

xa
k = xk, Pa

k = Pk (35)

Firstly, the initial state estimate and its covariance estimate are
assumed by

x̂k = x̂initial, P̂k = P̂initial (36)

where k means the epoch time tk (to be estimated) and the sigma
points are selected by

χ̂0,k = x̂k

χ̂ i,k = x̂k + (√
(L + λ)P̂k

)
i, i = 1, . . . , L

χ̂ i,k = x̂k − (√
(L + λ)P̂k

)
i−L, i = L + 1, . . . ,2L (37)

The UKF recursively updates the state vector to produce a bet-
ter estimate at each epoch, so the state is propagated to the next
measurement time using Eq. (23). However, the non-recursive un-
scented batch filter estimates a chosen epoch using all the mea-
surement set of data. So, the propagations of sigma points at a
chosen epoch are equal to the previously estimated values, and the
propagated state and associated covariance at the chosen epoch
can be directly set as follows [8] without calculating Eqs. (23), (25),
and (26),

χ̄ i,k = χ̂ i,k, x̄k = x̂k, P̄k = P̂k, i = 0, . . . ,2L (38)

Selected sigma points χ̄ i,k (i = 0, . . . ,2L) at a chosen epoch are
propagated for calculating all the measurement data set. Each
sigma point is propagated and the measurement vectors are calcu-
lated to each measurement time (t j, j = 1, . . . , N, j �= k) by using
the nonlinear function h from Eq. (12) as follows [8],

γ̃ i,k = h̃(χ̄ i,k) =

⎡⎢⎢⎢⎣
γ i,1
γ i,2

...

γ i,N

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
h(χ̄ i,1, t1)

h(χ̄ i,2, t2)

...

h(χ̄ i,N , tN)

⎤⎥⎥⎥⎦ ,

i = 0, . . . ,2L (39)

where χ̄ i, j (i.e. χ̄ i,1, χ̄ i,2, . . . , χ̄ i,N ) on the right side of Eq. (39)
are the propagated sigma points for each measurement time
(t j, j = 1, . . . , N, j �= k) and N is the total number of measurement
times.

The propagated measurements and covariances at each mea-
surement time are calculated by
Fig. 2. Flow of the non-recursive unscented batch filter.

Ȳk =

⎡⎢⎢⎣
ȳ1

ȳ2
...

ȳN

⎤⎥⎥⎦ =
2L∑

i=0

W (m)
i γ̃ i,k (40)

P̄Y
k =

2L∑
i=0

W (c)
i (γ̃ i,k − Ȳk)(γ̃ i,k − Ȳk)

T + R̃k (41)

where R̃k is the measurement noise matrix and the cross-correla-
tion matrix is computed by

P̄xY
k =

2L∑
i=0

W (c)
i (χ̄ i,k − x̄k)(γ̃ i,k − Ȳk)

T (42)

And the gain matrix is defined by

Kk = P̄xY
k

(
P̄Y

k

)−1
(43)

Finally, the state at epoch time tk is updated by

x̂k = x̄k + Kk(Ỹk − Ȳk) = x̄k + Kk	z̃k (44)

where 	z̃k is the measurement residual matrix calculated by the
difference between the actual (Ỹk) and computed (Ȳk) measure-
ment of all measurement times.

The non-recursive unscented batch filter algorithms from Eqs.
(40)–(44) are described in the similar forms to the UKF (Eqs.
(25)–(34)) for convenience. But, there are lots of differences. If
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the number of different types of measurements is nmeas , the to-
tal number (Ntot) of measurement data is equal to nmeas × N . The
dimensions of the measurement matrix (Ȳk) and covariance matrix
(P̄Y

k ) in Eqs. (40)–(41) are Ntot × 1 and Ntot × Ntot , respectively. In
Eqs. (42)–(43), the dimensions of the cross-correlation matrix (P̄xY

k )
and gain matrix (Kk) are the same as L × Ntot . The initial state from
Eq. (36) is corrected and updated using Eq. (44) iteratively. The it-
erations are terminated by the same condition of the batch least
squares filter in Eq. (20). The proposed algorithm estimates system
states and parameters at a chosen epoch time (not successive time)
by using the measurements collected over a fixed time span at a
time. This is the main difference from iterative or smoother filters
which process measurements sequentially in forward or backward
directions. In Fig. 2, the non-recursive unscented batch filter pro-
cess is summarized as a flowchart. The initial covariance is reset
after iteration since there is no propagation of covariance and new
information for additional measurement data.

4. Numerical simulations and results

Numerical simulations are carried out to demonstrate the per-
formance of the non-recursive unscented batch filter in orbit de-
termination problems. The performance of the non-recursive un-
scented batch filter is also compared with that of the existing
batch least squares filter in various aspects, using realistic dynamic
and measurement models for a low-Earth orbiting satellite. The
basic configurations, test cases, and results for the numerical sim-
ulations are described in the following subsections.

4.1. Measurement data simulations and initial configurations

In this study, the true orbit ephemeris and measurement data
are assumed to be generated by the High Precision Orbit Propa-
gator (HPOP) in the Satellite Tool Kit (STK) [18,22] for orbit de-
termination. In the HPOP module, the Gauss–Jackson method for
the numerical integration of the equations of motion, the EGM 96
model (up to a degree of 70 × 70) for perturbation due to the
non-symmetric geo-potential, the Jacciha70 model for the atmo-
spheric density, and the DE403 JPL coefficient for the lunar/solar
ephemeris are used. Atmospheric drag, lunar/solar gravitational at-
traction, and solar radiation pressure are also included. The atmo-
spheric drag coefficient is set to 2.0, the solar radiation pressure
coefficient is set to 1.0, and the constant area-to-mass ratio is set
to 0.02 m2/kg. For the equations of motion of the orbit determina-
tion system (described in Section 2), some model parameters are
set differently as follows: The atmospheric drag coefficient is set
to 2.3, the solar radiation pressure coefficient is set to 1.2, and the
constant area-to-mass ratio is set to 0.022 m2/kg. By using differ-
ent dynamic models for measurement data simulation and orbit
determination process, differences between the effects of the true
perturbations (from the HPOP module) and those of the mathe-
matically modeled perturbations (from dynamic models described
in Section 2) can be considered. Hence, this approach may be more
realistic for testing. The orbit calculated from the HPOP is consid-
ered as a true orbit, and is also used for verifying the accuracy
of the orbit determination. The initial true osculating orbital ele-
ments at epoch time consist of the semi-major axis of 6778.14 km,
the eccentricity of 10−5, the inclination of 51.60◦ , the right as-
cension of the ascending node of 25◦ , the argument of perigee
of 30.046◦ , and the true anomaly of 359.95◦ . The observation data
measured from three ground tracking stations are simulated for
the low-Earth orbiting satellites for 12 hours from the epoch. The
locations of the three selected stations are assumed as follows: Sta-
tion 1 (geodetic longitude 30.23◦ , geodetic latitude 86.23◦ , height
0.04 km), Station 2 (geodetic longitude −30.00◦ , geodetic latitude
−70.00◦ , height 0.10 km), and Station 3 (geodetic longitude 36.62◦ ,
Fig. 3. Access times strip chart between the three ground tracking stations and Earth
orbiting satellite assumed in the current study.

geodetic latitude 139.82◦ , height 0.05 km). Each measurement data
set is made up of range, azimuth, and elevation angles, which are
calculated using the geometrical relationship between the satellite
and ground tracking stations (described in Section 2). The mea-
surement noises for each ground tracking station are modeled as
a white Gaussian distribution. The measurement data are assumed
to be obtained at the data-sampling period of 30 s from January 1,
2000, 12:00:00.0 (UTC) for 12 hours. The satellite can be accessed
from the three ground tracking stations for a total of 17 times. The
access times are indicated in Fig. 3. The cumulative dwell time is
about 20% (2.5 hours) for the whole 12 hours. In other words, the
measurement data from 17 tracks are sparse and separated. For all
the numerical simulations, the position, r, velocity, v, and the in-
verse of the ballistic coefficient of the satellite, B∗ , are considered
as the components of the state vector x = [x, y, z, ẋ, ẏ, ż, B∗]. For
the scaled unscented transformation, the scaling parameter α is
set to 10−3, and β is set to 2, respectively. Because the process
noises are not considered, the dimension of state, L, is set to 7
and the second scaling parameter κ (≡ 3 − L) is set to −4. So,
λ (≡ α2(L + κ) − L) in Eq. (37) is equal to −4 × 10−6.

The states at a chosen epoch are determined using the batch
least squares filter and the proposed filter. From the estimated
states at a chosen epoch, the orbit ephemeris data are generated
from a specified epoch to a final time (for 12 hours) and compared
with the reference orbit calculated by HPOP. The RMS differences
between the generated orbit and reference orbit in radial, along
track, cross track, and position are applied for the performance as-
sessment of both the filters. Because the batch algorithms are used
in an iterative fashion, the absolute magnitudes of position errors
at a chosen epoch for each iteration, the number of iterations, and
computing time for the filter convergence are also considered as
the performance criteria. For all simulation tests, the estimation
convergence criterion in Eq. (20) is set to 10−3.

4.2. Effects of the initial errors in position and velocity

In this subsection, effects of the initial errors in position and
velocity are tested and compared in six cases for the two estima-
tion algorithms, the non-recursive unscented batch filter and the
batch least squares filter. The initial errors in position and veloc-
ity are assumed to be added [1 km, 1 km, 1 km, 1 m/s, 1 m/s,
1 m/s] for Case-1, [5 km, 5 km, 5 km, 5 m/s, 5 m/s, 5 m/s]
for Case-2, [10 km, 10 km, 10 km, 10 m/s, 10 m/s, 10 m/s] for
Case-3, [15 km, 15 km, 15 km, 15 m/s, 15 m/s, 15 m/s] for Case-4,
[20 km, 20 km, 20 km, 20 m/s, 20 m/s, 20 m/s] for Case-5, and
[30 km, 30 km, 30 km, 30 m/s, 30 m/s, 30 m/s] for Case-6, and
for each component of the true initial position and velocity vec-
tors are rtrue

0 = [4430.3587 km, 4388.6215 km, 2655.9643 km] and
vtrue = [−5.2185 km/s, 2.1182 km/s, 5.2047 km/s]. The initial
0
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Table 1
RMS errors of radial, along track, cross track, and position for the non-recursive unscented batch filter with various initial errors in position and velocity.

Case Radial error
(m, RMS)

Along error
(m, RMS)

Cross error
(m, RMS)

Position error
(m, RMS)

Iteration
#

Computing
time (s)

1 9.84 26.64 8.87 29.76 6 138
2 9.84 26.64 8.88 29.75 6 121
3 9.84 26.64 8.88 29.76 7 159
4 9.84 26.63 8.88 29.75 7 176
5 9.84 26.60 8.87 29.72 8 189
6 9.87 26.74 8.89 29.86 9 212

Table 2
RMS errors of radial, along track, cross track, and position for the batch least squares filter with various initial errors in position and velocity.

Case Radial error
(m, RMS)

Along error
(m, RMS)

Cross error
(m, RMS)

Position error
(m, RMS)

Iteration
#

Computing
time (s)

1 10.48 27.42 8.87 30.66 8 57
2 10.50 27.42 8.86 30.67 11 83
3 10.47 27.41 8.87 30.65 17 118
4 10.45 27.38 8.85 30.61 14 96
5 N/A N/A N/A N/A N/A N/A
6 N/A N/A N/A N/A N/A N/A
Fig. 4. Histories of iterations and initial estimate errors in position for filters with
various initial errors in position and velocity.

value of B∗ is assumed to be 0.05 for all six cases. The initial
covariance matrix, P0, has diagonal components with position,
velocity and B∗ elements. The initial covariance values of posi-
tion and velocity errors for the six cases are set to [(100 m)2,
(100 m)2, (100 m)2, (0.1 m/s)2, (0.1 m/s)2, (0.1 m/s)2] for Case-1,
[(500 m)2, (500 m)2, (500 m)2, (0.5 m/s)2, (0.5 m/s)2, (0.5 m/s)2]
for Case-2, [(1000 m)2, (1000 m)2, (1000 m)2, (1 m/s)2, (1 m/s)2,
(1 m/s)2] for Case-3, [(1500 m)2, (1500 m)2, (1500 m)2, (1.5 m/s)2,
(1.5 m/s)2, (1.5 m/s)2] for Case-4, [(2000 m)2, (2000 m)2,
(2000 m)2, (2 m/s)2, (2 m/s)2, (2 m/s)2] for Case-5, and
[(3000 m)2, (3000 m)2, (3000 m)2, (3 m/s)2, (3 m/s)2, (3 m/s)2]
for Case-6. The initial covariance of B∗ is assumed to be (0.005)2

for all six cases. The measurement data sampling period is as-
sumed to be 30 s.

Figs. 4(a) and 4(b) describe the histories of iterations and the
variations of the position errors with initial estimates at a chosen
epoch time. The variation of the initial estimate errors indicates a
filter correction by iteration. When the absolute magnitude of the
initial estimate errors in position settle down and become stable
after certain iterations, using the estimated initial state at the final
iteration, the orbit ephemeris is generated for 12 hours and com-
pared with that of the reference orbit. The RMS errors in radial,
along track, cross track and position for 12 hours, iteration num-
ber, and computing time for the non-recursive unscented batch
and the batch least squares estimations for various initial errors
in position and velocity, are summarized in Table 1 and Table 2,
respectively. For Case-1 to Case-4, both the filters are converged
and yield similar accuracy in determined states. The RMS errors
in position by the non-recursive unscented batch filter are slightly
smaller than those by the batch least squares filter. As the initial
errors in position and velocity are larger, the iteration and com-
puting times are remarkably increased in the batch least squares
filter. For Case-5 and Case-6, the batch least squares filter fails
to converge, while the non-recursive unscented batch filter shows
better convergence reliability. From these results, better robustness
and efficiency are obtained by the non-recursive unscented batch
process. For the batch least squares filter, the linearization process
is executed with an assumption that the difference between the
true orbit and the reference orbit are sufficiently small. Then, the
large initial errors in position and velocity can cause a difficulty
in convergence and in accurate estimation due to the nonlinear-
ity problem. Hence, it can be concluded that the non-recursive
unscented batch filter shows better convergence reliability if the
nonlinearity of a system is strengthened.
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Table 3
RMS errors of radial, along track, cross track, and position for the non-recursive unscented batch filter with various sampling periods.

Sampling
period (s)

Radial error
(m, RMS)

Along error
(m, RMS)

Cross error
(m, RMS)

Position error
(m, RMS)

Iteration
#

Computing
time (s)

30 9.84 26.64 8.87 29.76 6 126
60 8.53 28.41 9.03 31.00 8 63

120 8.90 29.60 9.12 32.23 5 48
180 7.81 24.91 11.31 28.45 6 39
240 8.29 34.22 9.60 36.49 8 54
300 6.98 29.25 9.02 31.40 6 41

Table 4
RMS errors of radial, along track, cross track, and position for the batch least squares filter with various sampling periods.

Sampling
period (s)

Radial error
(m, RMS)

Along error
(m, RMS)

Cross error
(m, RMS)

Position error
(m, RMS)

Iteration
#

Computing
time (s)

30 10.48 27.42 8.87 30.66 8 57
60 9.53 29.86 9.49 32.75 11 62

120 10.45 31.77 9.05 34.65 16 95
180 N/A N/A N/A N/A N/A N/A
240 N/A N/A N/A N/A N/A N/A
300 N/A N/A N/A N/A N/A N/A
4.3. Effects of the measurement data-sampling periods

The comparisons of the non-recursive unscented batch filter
with the batch least squares filter are carried out for six measure-
ment data-sampling periods—30, 60, 120, 180, 240, and 300 s. The
true initial position and velocity, the initial errors in position and
velocity, and the initial covariance values of position and veloc-
ity errors are set to the same value as in Case-1 described in the
previous subsection. In Table 3 and Table 4, the results are sum-
marized for the radial, along track, cross track, positions errors,
iteration number, and computing time for the non-recursive un-
scented batch filter and the batch least squares filter in the various
sampling periods, respectively. In Figs. 5(a) and 5(b), the histories
of iterations and initial estimate errors in position for the non-
recursive unscented batch filter and the batch least squares filter
are described for all six cases. When the sampling periods are 30,
60, and 120 s, the position accuracy of estimation yields a sim-
ilar grade for both the filters. However, the batch least squares
filter fails to get converged results when the sampling period
is relatively large. When the sampling periods are longer (above
180 s) more advantages of the non-recursive unscented batch pro-
cess become apparent. Generally, the computational efforts of the
non-recursive unscented batch process are dependent on the total
number of sigma points. So, the computational time of the non-
recursive unscented batch filter is expected to be much more than
that of the batch least squares filter. But for the 60 s and 120 s
sampling periods, due to the decrease of iterations, the compu-
tational time for the non-recursive unscented batch algorithm is
shorter than that of the batch least squares filter. Because both the
two filters are used for post processing, the computational time is
not a big issue. The two batch algorithms provide an estimate of
the state at a chosen epoch using an entire set of data. So, long
sampling periods may bring about a decline in accuracy due to the
decrease of measurement data, as well as the nonlinear effect. Ac-
cording to Tables 3 and 4, and Figs. 5(a) and 5(b), the non-recursive
unscented batch filter is converged robustly, and the position er-
rors are kept at a similar level for all sampling periods. Especially,
the adaptability to long sampling periods of the non-recursive un-
scented batch process is superior to the batch least squares filter.

4.4. Effects of the measurement errors

To examine the effects of measurement noise on the results,
various levels of measurement noise are applied to the non-
Fig. 5. Histories of iterations and initial estimate errors in position for filters with
various sampling periods.



E.-S. Park et al. / Aerospace Science and Technology 14 (2010) 387–396 395
Table 5
RMS errors of radial, along track, cross track, and position for the non-recursive unscented batch filter with various measurement noises.

Case Radial error
(m, RMS)

Along error
(m, RMS)

Cross error
(m, RMS)

Position error
(m, RMS)

Iteration
#

Computing
time (s)

1 9.84 26.64 8.87 29.76 6 140
2 10.69 27.21 9.09 30.61 5 98
3 12.50 28.86 9.93 32.98 5 97
4 16.38 34.02 13.15 39.98 5 97
5 23.19 45.53 24.84 56.81 6 117
6 34.64 80.72 60.18 106.47 8 155

Table 6
RMS errors of radial, along track, cross track, and position for the batch least squares filter with various measurement noises.

Case Radial error
(m, RMS)

Along error
(m, RMS)

Cross error
(m, RMS)

Position error
(m, RMS)

Iteration
#

Computing
time (s)

1 10.48 27.42 8.87 30.66 8 64
2 11.70 28.60 9.07 32.21 7 58
3 14.75 32.45 10.09 37.05 7 52
4 20.88 42.95 13.82 49.71 7 51
5 34.27 69.04 23.91 80.70 7 55
6 58.85 121.68 45.86 142.73 6 45
recursive unscented batch filter and the batch least squares filter.
Six sets of standard deviations for range (σrange), azimuth (σazimuth),
and elevation (σelevation) errors assumed as [25 m, 0.015◦ , 0.015◦]
for Case-1, [50 m, 0.03◦ , 0.03◦] for Case-2, [100 m, 0.06◦ , 0.06◦]
for Case-3, [200 m, 0.12◦ , 0.12◦] for Case-4, [400 m, 0.24◦ , 0.24◦]
for Case-5, and [800 m, 0.48◦ , 0.48◦] for Case-6. The noise char-
acteristics of the three ground tracking stations are assumed to
be the same. For each case, the measurement data are generated
from the true orbit calculated by the HPOP as described in the
subsection “Measurement data simulations and initial configura-
tions.” The initial conditions are assumed to be the same values as
in the Case-1 described in the subsection “Effects of the initial er-
rors in position and velocity.” In Table 5 and Table 6, the results
are summarized for the radial, along track, cross track, position er-
rors, iteration number, and computing time for the non-recursive
unscented batch filter and the batch least squares filter for various
measurement noises, respectively. For the six test cases, the non-
recursive unscented batch filter and the batch least squares filter
are all converged within 5–9 iterations and both the filters are ap-
plicable for nonlinear estimation under noisy measurement. The
number of iterations for the non-recursive unscented batch filter is
less than those of the least squares filter. As can be seen in Table 5,
Table 6, and Fig. 6, when the measurement noises are relatively
small (Case-1 and Case-3), the position errors (the RMS position
errors for 12 hours) from the non-recursive unscented batch filter
are slightly better than the results of the batch least square filter.
However, the larger the noise of measurement the better the re-
sults the non-recursive unscented batch filter achieves in terms of
the RMS position accuracy.

5. Conclusions

In the current paper, an alternative approach to batch al-
gorithm, the non-recursive unscented batch filter using the un-
scented transformation, has been suggested and applied for satel-
lite orbit determination. The system dynamic equations consist of
the Earth’s geo-potential, the atmospheric drag and the lunar/solar
gravitational perturbations. The range, azimuth and elevation an-
gle of the satellite measured from the ground stations are used for
orbit determination. The purpose of the non-recursive unscented
batch filter is to overcome the linearization and approximation er-
rors. In the case of relatively small initial errors in position and
velocity, or the short sampling periods of measurement data, or
small measurement noises, results of the non-recursive unscented
batch filter and the batch least squares filter are similar. But, as
Fig. 6. RMS errors in position for various measurement noise levels for the non-
recursive unscented batch filter and the batch least squares filter.

the nonlinearity is strengthened severely, in other words, as the
large initial errors, long sampling periods and large measurement
noises are considered, the non-recursive unscented batch process
is more stable or needs fewer iterations for convergence or ac-
curate than the batch least squares filter. Additionally, due to the
unscented transformation, the calculations of partial derivatives are
not required for the non-recursive unscented batch filter, which
are very convenient to construct nonlinear estimation algorithms.
Hence, the non-recursive unscented batch process can have an im-
portant role for verifying and improving other applications.
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