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ANALYSIS OF RELATIVE MERITS OF UNSCENTED AND 
EXTENDED KALMAN FILTERS IN ORBIT DETERMINATION 

James Woodburn,* Vincent Coppola† 

The unscented and extended forms of the Kalman filter are compared in the con-

text of orbit determination. Differences and similarities of the algorithms are iden-

tified with an emphasis on treatment of state-error uncertainty in the presence of 

uncertainty in the dynamics and measurement models. A hybrid filter which com-

bines elements of both algorithms is proposed in search of an optimal combination 

of computational performance and accommodation of higher order effects during 

measurement processing. The filter variants are compared based on application to 

set of realistic orbit determination scenarios.  

INTRODUCTION 

The Extended Kalman Filter (EKF) has a long history in operational orbit determination. Satel-

lite systems such as NASA’s Tracking and Data Relay Satellites (TDRS) and the US Air Force’s 

Global Positioning System (GPS) satellites use EKFs in daily operations. The Unscented Kalman 

Filter (UKF) is a more recently developed estimation algorithm that has been documented to have 

advantages over the EKF in a number of estimation applications including orbit determination1234. 

The advantages of using the UKF as compared to the EKF are attributed to the inclusion of higher 

order moments in the state error distribution. The UKF should generate a better description of the 

state-error and measurement-error distribution functions relative to the EKF when those error-dis-

tributions are non-Gaussian. 

In this investigation, we take a systematic approach to investigate the differences in the EKF 

and UKF algorithms and evaluate the performance of both algorithms across a variety of realistic 

orbit determination scenarios. We emphasize that our study is specific to the estimation of orbits 

and impose restrictions on algorithm implementation consistent with the needs of operational orbit 

determination. Numerical comparisons will be performed using operational orbit determination 

software with realistic force and measurement models. Our goal is to produce a practical guide to 

indicate situations where one algorithm or the other may be preferred.  

As a precursor to numerical comparisons, we start with a description of a generic filter recursion 

followed by the basic processing equations for the EKF and UKF algorithms.  The equations are 

presented in a manner that helps identify similarities and differences between the two algorithms. 

We also provide a discussion of real-world challenges, such as the inclusion of appropriate dynam-

ical process noise, that are critical to the successful use of sequential estimation processes in oper-

ations. 
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Our quantitative analysis begins with a common orbit determination scenario, where initial 

Gaussian error distributions remain Gaussian throughout the estimation of an updated orbit solu-

tion. This “easy” case is intended to demonstrate the equivalence of results obtained from the EKF 

and UKF algorithms. We then extend the analysis to several problems of practical concern where 

higher-order effects in the dynamics and/or measurement models become important. For each sit-

uation, we will evaluate where non-linear effects are most prevalent, and the effectiveness of each 

algorithm. 

CONTEXT OF OPERATIONAL ORBIT DETERMINATION 

In his description of optimal orbit determination, Wright lays out a number of tenets related to 

accommodating uncertainty in the orbital dynamics during orbit estimation5. While the application 

of these tenets in Wright’s work was realized in the form of an EKF, most of the principles are 

equally relevant to the UKF. For the convenience of the reader, we repeat the subset of those tenets 

relevant to our current work here: 

 Sequential processing is used to account for force modeling errors and measurement 

information in the time order in which they are realized. 

 All state estimate models and state estimate model error representations are derived 

from appropriate force modeling physics and measurement sensor performance. 

 All measurement models and measurement model error approximations are derived 

from appropriate sensor hardware definitions and associated physics, and measurement 

sensor performance. 

 The state estimation structure is complete. 

Both the EKF and UKF are sequential filters and therefore at least partially satisfy the first tenet. 

There is subtle meaning, however, that imposes a further restriction on the use of the algorithms. 

The requirement to account for force modeling errors in a temporally local manner means that it is 

not sufficient to wait until the end of a large measurement gap to apply the effects of dynamical 

process noise. Wright’s tenets are based on the idea of appropriately connecting process noise to 

the physical processes which are the source of the uncertainty. In practice, this philosophy leads to 

filter implementations requiring minimal operator intervention after initial calibration. Long time 

update periods are divided into a series of smaller time updates with process noise added to the 

state-error covariance matrix after each small update. This allows the incremental additions of un-

certainty to accumulate according to the physics of the problem over the remainder of the time 

update interval. The use of physically-connected process noise models is central to the problem of 

producing realistic state-error covariance as a product of orbit determination6. 

The second and third tenets above motivate the type of model used to represent uncertainty in 

physical models for orbit evolution and measurement representation. For example, most random 

parameters have time varying values but the evolution process is either unknown or lacks sufficient 

input information to be accurately modeled. The known physics, however, dictate how variations 

in the unknown parameter affect the model, the expected range of values for the parameter and how 

quickly the value might change. In such cases, the application of appropriately configured stochas-

tic processes is a reasonable approach. 

The final tenet above reflects the desire to estimate all unknown elements of the dynamics and 

measurement models based on the importance of a complete state space to achieving realistic co-

variance. The argument for the use of a complete state space is simple, to have an accurate model 

of the uncertainty in the output of a process, we need to properly characterize the uncertainty of the 

inputs and of the process itself. Yet, this tenet is often not followed operationally. Reasons for 
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disregard include concerns about observability in least squares algorithms and concerns about com-

putational performance and the size of outputs in filters. We include completeness of state space in 

our discussion to since it is relevant to the computational performance of the filters, most notably 

the UKF. 

Stochastic sequences 

The use of stochastic sequences to model uncertain parameters in dynamical and measurement 

models is a common practice in sequential orbit determination. With selection of an appropriate 

stochastic model and proper calibration, the estimation process can be configured to add state-error 

uncertainty in a manner consistent with the associated physics in terms of timing, size of effect and 

rate of change7. For example, we might select a random-walk process to emulate the drift of a free-

running clock since, while the rate of drift may be bounded, the accumulated drift is not. Con-

versely, we choose sequences with bounded uncertainty to model stochastic force modeling param-

eters such as a solar pressure or drag coefficient. For the purpose of this study, we selected to use 

an exponentially-correlated Gauss-Markov sequence with exponential decay to model unknown 

force and measurement model parameters8. 

The stochastic sequence is generated using the following formula during simulation of the ran-

dom variable, 𝑉, 

𝑉𝑘+1 = Φ(𝑡𝑘+1, 𝑡𝑘)𝑉𝑘 + √(1 − Φ2(𝑡𝑘+1, 𝑡𝑘)) 𝑤(𝑡𝑘). 
 

The definitive time transition is defined as an exponential decay given as, 

Φ(𝑡𝑘+1, 𝑡𝑘) = 𝑒𝛼⌊𝑡𝑘+1−𝑡𝑘⌋,  

where 𝛼 is the diffusion coefficient, which is set by the analyst to specify the volatility of the se-

quence. Note that 𝛼 is typically set via the specification of a half-life representing the time required 

for the estimate to decay to half of its current value. The Gaussian white-noise random variable, 𝑤, 

is configured to have an analyst selected variance of 𝜎𝑤
2 , 

𝐸[𝑤(𝑡𝑘)𝑤(𝑡𝑘)] = 𝜎𝑤
2 .  

Requirements for implementation in a filter process are completed with the identification of the 

process noise function, 

Q(𝑡𝑘+1, 𝑡𝑘) = (1 − Φ2(𝑡𝑘+1, 𝑡𝑘)) 𝜎𝑤
2 .  

We note that this particular stochastic sequence is appropriate for modeling physical parameters 

where the mean, range of variation and time scale of variation are relatively well known. These 

criteria are easily met inside our simulation framework. 

ALGORITHM REVIEW AND COMPARISON 

In order to facilitate an understanding of the differences in the results obtained from the EKF 

and the UKF, it is useful to review a description of the two filter algorithms. In general, filtering 

algorithms can be described as a recursive machine of time and measurement updates that serve to 

generate estimates of an unknown state with an associated description of the error associated with 

that state estimate. Time updates serve to propagate the state and associated state-error estimates 

through time. Measurement updates fold in observational information to improve the state estimate. 

The generic flow and structure of a filtering algorithm is depicted in Figure 1. Note that the overall 
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time update is depicted as the composite of multiple sub-steps and the overall measurement update 

is depicted as processing multiple measurements at the same epoch. 

 

Figure 1. Generic Filter Recursion Diagram. 

The time transition operation of the time update moves the state estimate forward to the time of 

the next measurement, to the time of the next node on a processing time grid, to the time of an 

event, such as a maneuver, or to any other time as required by the filter process. A time update may 

be followed by a measurement update, another time update or some type of specialized processing 

associated with an event. Because the time transition model is imperfect or incomplete due to force 

modeling uncertainty and approximations, the time update must also include appropriate dynamical 

process noise to accommodate the increase in the uncertainty of the state across a time transition. 

The inclusion of measurement information produces a discontinuous change in the state esti-

mate and the associated description of uncertainty. The uncertainty associated with elements of the 

state observable from a particular measurement decreases with the inclusion of the measurement 

information. State elements may be directly observable, where the measurement model formulation 

includes the state element explicitly, or indirectly observable through correlation with one or more 

elements of the state that are directly observable. It is common for more than one measurement to 

be processed at a given point in time. In these cases, the analyst or the algorithm designer elects to 

process the multiple measurements at a common epoch sequentially, simultaneously or via a cus-

tom processing scheme. Sequential processing uses the a posteriori state from each processed 

measurement at the common epoch as the a priori state for processing the next measurement. In 

simultaneous processing, also referred to as vector measurement processing, the same a priori state 

is used for processing all measurements at the common epoch and a single, combined update is 

made to the state and state-error uncertainty.  

An important part of the measurement update procedure is the determination of measurement 

acceptance or rejection. The rejection of “bad” observation data is critical to avoid corruption of 

the estimation state. For example, the acceptance of bad measurements can move the state estimate 
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away from the true state while reducing the state-error uncertainty in a manner that results in the 

rejection of all future observations, a condition known as filter divergence.  

In the case of orbit determination, a typical estimation state contains a number of sub-states 

including six elements describing the orbit, parameters associated with the modeling of forces on 

the satellite, and parameters associated with taking measurements of the satellite. A simple estima-

tion state might include the position and velocity of the satellite, the ballistic coefficient, the solar 

pressure coefficient, a transponder delay, and biases for range, azimuth and elevation measurements 

taken from three ground stations. In this example, as shown in Table 1, the state space contains 18 

elements. It should be noted that the size of the state space can grow significantly when the orbits 

of multiple satellites are estimated simultaneously, a larger network of tracking stations is involved, 

or more detailed force and measurement models with additional unknown parameters are used. 

Table 1. Example Orbit Determination State Content. 

State Element 

Position X Station 1 Azimuth Bias 

Position Y Station 1 Elevation Bias 

Position Z Station 1 Range Bias 

Velocity X Station 2 Azimuth Bias 

Velocity Y Station 2 Elevation Bias 

Velocity Z Station 2 Range Bias 

Solar Pressure Coefficient Station 3 Azimuth Bias 

Drag Coefficient Station 3 Elevation Bias 

Transponder Delay Station 3 Range Bias 

 

Common definitions 

The orbit determination process produces an estimate, 𝑥 , of an unknown state, 𝑥, which includes 

the orbit of the satellite plus other parameters. The state estimate evolves according to a set of non-

linear, ordinary differential equations whose solution is given as 

𝑥𝑘+1|𝑘 = 𝑋(𝑡𝑘 , 𝑥𝑘|𝑘 , 𝑡𝑘+1). (1) 

The subscript on the state, 𝑘 + 1|𝑘, denotes two discrete time references. The index prior to the 

vertical separator denotes the time of the current state and the index after the vertical separator 

denotes the time of the last processed measurement. Equation (1), therefore, represents the compu-

tation of the state at time 𝑡𝑘+1 as a function of the state at time 𝑡𝑘 , where the state at time 𝑡𝑘 

includes all measurements up to and including those at time 𝑡𝑘. The orbit determination process 

requires measurements, 𝑦, to improve the estimate of the orbit. Measurement values are a function 

of the estimated state. The measurement model representation to compute an expected value of the 

measurements, �̂�, from the current state estimate is given as 

�̂�𝑘+1 = 𝑌(𝑡𝑘+1, 𝑥𝑘+1|𝑘). (2) 
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Note that in the case of measurement notation, the subscript serves to indicate the discrete time 

index of the measurement. Measurement residuals, also referred to as innovations, are computed as 

the difference between the actual and the expected values of the measurement, 

Δ𝑦𝑘+1 = 𝑦 − �̂�𝑘+1. (3) 

 

Extended Kalman Filter 

The EKF is a well-known adaptation of the linear Kalman Filter algorithm for use on problems 

that include non-linear state dynamics, non-linear measurement modeling or both. The EKF algo-

rithm requires an a priori state estimate and associated state-error covariance as initial conditions. 

The state-error uncertainty in the EKF algorithm is described by the estimate of the mean and the 

state-error covariance, the first two moments of the uncertainty distribution. In the case of a Gauss-

ian error distribution, knowledge of the first two moments is sufficient to provide a complete de-

scription of the distribution.  

In the EKF time update, the state estimate is propagated forward using the non-linear dynamical 

model, Equation 1, and the corresponding state-error covariance is propagated using the linear 

state-error transition matrix as shown in Equation 4.  

𝑃𝑘+1|𝑘 = Φ(𝑡𝑘+1, 𝑡𝑘)𝑃𝑘|𝑘Φ𝑇(𝑡𝑘+1, 𝑡𝑘) + Q(𝑡𝑘+1, 𝑡𝑘). (4) 

The state-error transition matrix, Φ(𝑡𝑘+1, 𝑡𝑘), is developed using a linearized approximation of 

motion in the vicinity of the current state estimate and requires the computation of the Jacobian of 

the state derivative with respect to the state. The definitive propagation of the covariance matrix, 

P, is augmented by the addition of the process noise matrix, Q(𝑡𝑘+1, 𝑡𝑘), which accommodates 

deficiencies in the dynamical model and is essential to the effective operation of the EKF. The 

computation and application of Q(𝑡𝑘+1, 𝑡𝑘) is discussed in more detail in the sequel. 

During the EKF measurement update, the expected value of the measurement is computed using 

the non-linear measurement representation, Equation 2, based on the current state estimate. The 

measurement-error covariance, �̃�𝑘+1, is computed as the sum of the linear mapping of the state-

error covariance to measurement coordinates and the measurement white noise variance, 𝑅𝑘+1, 

𝐻𝑘+1 =
𝜕𝑌(𝑡𝑘+1,�̂�𝑘+1|𝑘)

𝜕𝑥𝑘+1|𝑘
, (5) 

�̃�𝑘+1 = 𝐻𝑘+1𝑃𝑘+1|𝑘𝐻𝑘+1
𝑇 + 𝑅𝑘+1. (6) 

Mapping of state-error covariance into measurement coordinates requires the computation of the 

Jacobian, 𝐻, of the measurement representation with respect to the state. The Kalman gain, 𝐾𝑘+1, 

is computed and used in the update equations for the state and state-error covariance as 

𝐾𝑘+1 = 𝑃𝑘+1|𝑘𝐻𝑘+1
𝑇 �̃�𝑘+1

−1 , (7) 

𝑥𝑘+1|𝑘+1 = 𝑥𝑘+1|𝑘 + 𝐾𝑘+1Δ𝑦𝑘+1. (8) 

𝑃𝑘+1|𝑘+1 = (𝐼 − 𝐾𝑘+1𝐻𝑘+1)𝑃𝑘+1|𝑘. (9) 
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Augmentation of the EKF for the purpose of improved performance in the presence of higher 

order effects is a standard practice for applications where such effects are expected. Common mit-

igation strategies include the use corrective terms associated with the second-order Gaussian filter 

as well as the application of measurement underweighting which applies an analyst specified limit 

to reduction of the state-error covariance by a single measurement9. The second-order Gaussian 

filter requires the computation of Hessian matrices of the dynamics and measurement models10. 

Unscented Kalman Filter 

The UKF algorithm uses a judiciously selected set of sample points, often called sigma points, 

to represent the uncertainty distribution of the state. The transition of the state estimate across time 

and the evaluation of measurement representations are treated as coordinate transformations ac-

complished using the unscented transform procedure. The unscented transform uses only non-linear 

evaluations of the state propagation and measurement models and therefore does not require the 

evaluation of Jacobians. State-error uncertainty in the UKF algorithm is expressed as the estimate 

of the mean and the state-error covariance. At some steps in the processing algorithm, the state-

error and measurement uncertainty are described by a collection of samples, which can contain 

information on higher order moments, but this sample-based representation is not maintained across 

the entirety of the algorithm. For example, the UKF algorithm requires an a priori state estimate 

and associated state-error covariance as initial conditions but replaces the state-error covariance 

with a set of sample points for propagation over the time update interval. Samples are used again 

to model the measurement, but the result of the measurement update is an updated state estimate 

and state-error covariance. 

A familiarity with the unscented transform is needed to understand the UKF. We will use the 

scaled variant of the unscented transform that was developed to overcome numerical and localiza-

tion issues associated with the sigma point selection method in the standard unscented transform4.  

The scaled, unscented transform begins with a mean, �̅�, and covariance, 𝑃𝑥𝑥, in a particular set of 

coordinates. The mean and covariance are replaced by a collection of samples including the mean 

and sigma points that have the same statistics as the original mean and covariance. These sigma 

points are computed as scaled column vectors of the lower-triangular Cholesky decomposition of 

the covariance matrix. The scale factor used in the construction of the sigma points is a function of 

state size, 𝑛, and two user-selectable parameters: 𝜅, which is a free parameter from the standard 

unscented transform, and 𝛼, which is a scaling control introduced to retain locality in the sigma 

points. The scaling control, 𝛼, is set to a small number to reduce the distance between the sigma 

points and the mean of the distribution. An additional free parameter, 𝛽, is included in the weight 

of the mean sample when used in the computation of the transformed covariance. The value of 𝛽 

may be chosen to affect the matching of higher order moments where (𝛽 = 2) is optimal for Gauss-

ian distributions. A convenience parameter, 𝜆, may be defined to allow for a presentation of the 

scaled algorithm that mirrors the standard unscented transform11. The procedure for using the scaled 

unscented transform to convert a mean and covariance from the set of coordinates, 𝑥, to a new 

mean and covariance in another set of coordinates, 𝑦, where 𝑥 and 𝑦 are related by the non-linear 

transformation defined by 𝑦 = 𝐹(𝑥), is as follows: 

𝜆 = 𝛼2(𝑛 + 𝜅) − 𝑛 (10) 

χ0 = �̅� (11) 

χ𝑖 = �̅� + (√(𝑛 + 𝜆)𝑃𝑥𝑥)
𝑖

   𝑖 = 1, … , 𝑛 (12) 
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χ𝑖 = �̅� − (√(𝑛 + 𝜆)𝑃𝑥𝑥)
𝑖

   𝑖 = 𝑛 + 1, … , 2𝑛 (13) 

Υ𝑖 = 𝐹(𝜒𝑖) (14) 

𝑊0
𝑚 = 𝜆 (𝑛 + 𝜆)⁄  (15) 

𝑊𝑖
𝑚 = 𝑊𝑖

𝑐 = 1 {2(𝑛 + 𝜆)}⁄    𝑖 = 1, … ,2𝑛 (16) 

𝑊0
𝑐 = 𝜆 (𝑛 + 𝜆) + (1 − 𝛼2 + 𝛽)⁄  (17) 

�̅� =  ∑ 𝑊𝑖
𝑚Υ𝑖

2𝑛

𝑖=0

 

(18) 

𝑃𝑦𝑦 = ∑ 𝑊𝑖
𝑐(Υ𝑖 − �̅�)

2𝑛

𝑖=0

(Υ𝑖 − �̅�)𝑇 

(19) 

As noted above, the UKF algorithm leverages the unscented transform in both the time and 

measurement steps of filter recursion. In the time update, the UKF propagation of the mean estimate 

follows the scaled unscented transform to create a transformed mean state at the end time of the 

propagation. Each sample of the state distribution at time 𝑡𝑘 is propagated using the non-linear 

dynamical model given in Equation 1 to time 𝑡𝑘+1. The mean estimate is then formed as the 

weighted sum of the transformed samples as shown in Equation 23. The time transition of the state-

error covariance is performed as the sum of the outer products of the differences between the sam-

ples and the mean as shown in Equation 24, but with the addition of process noise, Q, to account 

for uncertainty in the non-linear propagation model.  

𝜒𝑘
0 = 𝑥𝑘|𝑘 (20) 

𝜒𝑘
𝑖 = 𝑥𝑘|𝑘  ±  (√(𝑛 + 𝜆)𝑃𝑘|𝑘)

𝑖

         
𝑖 = 1, … ,2𝑛

𝑖 = 1, … , 𝑛  𝑢𝑠𝑒𝑠 +
𝑖 = 𝑛 + 1, … ,2𝑛  𝑢𝑠𝑒𝑠 −

 
(21) 

 𝜒𝑘+1
𝑖 = 𝑋(𝑡𝑘 ,  𝜒𝑘

𝑖 , 𝑡𝑘+1) (22) 

𝑥𝑘+1|𝑘 = ∑ 𝑊𝑖
𝑚

2𝑛

𝑖=0

𝜒𝑘+1
𝑖  

(23) 

𝑃𝑘+1|𝑘 = ∑ 𝑊𝑖
𝑐 (( 𝜒𝑘+1

𝑖 − 𝑥𝑘+1|𝑘)( 𝜒𝑘+1
𝑖 − 𝑥𝑘+1|𝑘)

𝑇
)

𝑖

+ Q(𝑡𝑘+1, 𝑡𝑘) 
(24) 

In the general UKF formulation, the transformed state samples,  

 𝜒𝑘+1
𝑖 ,may then be used directly in measurement processing or formed into a sample mean and 

covariance, where the new covariance is resampled prior to measurement processing.  Inclusion of 

process noise as described in Equation 24 dictates that our UKF implementation use the latter strat-

egy of re-sampling an updated state-error covariance. The reasons for our selection of the formula-

tion shown above for the inclusion of process noise in the UKF are discussed in the sequel. 



 9 

During measurement processing, the scaled unscented transform is applied to compute the mean 

and error-covariance of the expected measurement. Each state sample is used to generate a meas-

urement sample. The sample mean and error-covariance are then computed from the set of meas-

urement samples. The cross-covariance between the state and measurement coordinates is also 

computed for use in the Kalman gain computation. Finally, the Kalman measurement update is 

performed to generate the updated state and state-error covariance. The UKF measurement update 

sequence is given as 

𝜒𝑘+1
0 = 𝑥𝑘+1|𝑘 (25) 

𝜒𝑘+1
𝑖 = 𝑥𝑘+1|𝑘  ±  (√(𝑛 + 𝜆)𝑃𝑘+1|𝑘)

𝑖

        
𝑖 = 1, … ,2𝑛

𝑖 = 1, … , 𝑛  𝑢𝑠𝑒𝑠 +
𝑖 = 𝑛 + 1, … ,2𝑛  𝑢𝑠𝑒𝑠 −

 
(26) 

  Υ𝑘+1
𝑖 = 𝑌(𝑡𝑘+1,  𝜒𝑘+1

𝑖 )   𝑖 = 0, … ,2𝑛 (27) 

�̂�𝑘+1 = ∑ 𝑊𝑖
𝑚

2𝑛

𝑖=0

Υ𝑘+1
𝑖  

(28) 

�̃�𝑘+1 = ∑ 𝑊𝑖
𝑐 (( Υ𝑘+1

𝑖 − �̂�𝑘+1)( Υ𝑘+1
𝑖 − �̂�𝑘+1)

𝑇
)

2𝑛

𝑖=0

 + R𝑘+1 

(29) 

𝑃𝑘+1
𝑥𝑦

= ∑ 𝑊𝑖
𝑐 (( 𝜒𝑘+1

𝑖 − 𝑥𝑘+1|𝑘)(Υ𝑘+1
𝑖 − �̂�𝑘+1)

𝑇
)

2𝑛

𝑖=0

 

(30) 

𝐾𝑘+1 = 𝑃𝑘+1
𝑥𝑦

�̃�𝑘+1
−1  (31) 

𝑥𝑘+1|𝑘+1 = 𝑥𝑘+1|𝑘 + 𝐾𝑘+1Δ𝑦𝑘+1 (32) 

𝑃𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘 − 𝐾𝑘+1�̃�𝑘+1𝐾𝑘+1
𝑇  (33) 

 

Process noise inclusion in the UKF 

Literature on the UKF offers two options for the inclusion of process noise: a purely additive 

approach where a process noise matrix is added to the covariance determined from definitive prop-

agation, or augmentation of the state vector to include process noise states. The latter option, while 

preferred by some authors since it avoids a re-sampling operation to create new sigma points after 

the covariance is updated, appears to only be applicable to cases where process noise can be applied 

in a purely additive sense at the end of a time update without concern for the method of uncertainty 

evolution over the time update interval. The state vector augmentation approach does not alter the 

trajectories of the sigma points, it merely utilizes the mechanics of the unscented transform to affect 

the state error covariance to avoid an additive operation that necessitates re-sampling of the sigma 

points12.  

The use of stochastic sequences within the dynamical model establishes a physical-connection 

in the models of dynamical uncertainty, linking the inclusion of process noise to its effect on the 

orbit and allowing for the selection of time scales appropriate to individual physical phenomena. 
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Sigma points, constructed at the singular epoch at the start of a time update and propagated using 

a definitive dynamical model, cannot adequately emulate the increase in uncertainty over time as-

sociated with such random parameters. Proper evolution of the state error covariance requires that 

process noise effects be included in a temporally and spatially local sense to the source of the dy-

namical uncertainty.  

Finally, we note that, in addition to process noise associated directly with state entries, it is often 

desirable to include process noise to accommodate inaccuracies in dynamical models that cannot 

be estimated in a practical manner in state space. One such example is the accommodation of errors 

in the central body gravity field13. Under this circumstance, reforming the covariance and adding 

Q as shown in Equation 24 is required to retain proper physical and temporal connection of the 

dynamic modeling errors. We therefore find the augmented state vector approach to process noise 

in the UKF to be incompatible with the tenets of optimal orbit determination. It can be argued, 

however, that in cases of large state uncertainty, the proper handling of process noise is a minor 

consideration in the overall evolution of the orbit-error uncertainty. For this reason, we will evalu-

ate both options in the UKF time update: breaking long time updates into a series of shorter time 

updates accommodating temporally correct process noise inclusion and mapping all process noise 

effects to the end of the time update interval for inclusion at the final time. 

Algorithm comparison 

The EKF and UKF both use the first (mean) and second (covariance) order moments of the 

state-error distribution to represent the state uncertainty. The UKF will also generate information 

describing higher moments during portions of the processing algorithm. The measurement update 

operation, however, produces an updated mean and state-error covariance without higher order 

moment information. The state-error covariance is resampled to start the next iteration of the re-

cursion. A brief summary of the most apparent algorithmic characteristics of the EKF and UFK is 

given in Table 2.  

Table 2. Algorithm Comparison. 

 EKF UFK 

Initial conditions Mean/Cov Mean/Cov 

Non-linear propagations in time update 1 2n+1 

Measurement evaluations per observation 1 2n+1 

State transition Jacobian Yes No 

Measurement Jacobian Yes No 

Computational load Moderate High 

Implementation complexity Moderate Low 

Higher order moments No Partial 

Preferred coordinates Yes Difficult 

 

The EKF can be implemented using a variety of state coordinate options. It has been shown, for 

example, that the use of orbit elements in the state space of the EKF has advantages in terms of 

estimation accuracy and convergence when compared to an implementation in Cartesian coordi-

nates14. The main benefit of preferred coordinate selection in state space is retention of a state-error 
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distribution that is Gaussian or nearly Gaussian as uncertainty increases. In theory, the UKF could 

also be implemented utilizing orbit elements in state space, but the addition and subtraction opera-

tions required in the construction of sigma points and in the reconstruction of a transformed mean 

and covariance can be problematic for state elements with restricted domains or specialized addi-

tion rules. For example, a deviation in the eccentricity of the orbit cannot be allowed to result in a 

negative value and the subtraction of mean anomaly values must be cognizant of the fact that the 

difference between 180 and -180 degrees is actually zero.  

Comparisons of the equations used in the time and measurement updates of the EKF and UKF 

are given in Figures 2-3. It is clear from an examination of the equations that the UKF will require 

considerable more computational resource than the EKF when the non-linear processes of state 

propagation and measurement modeling are complex and as state size becomes large. We note that 

the need for (2n+1) non-linear state propagations during each time update is a strong motivator to 

ignore the tenet of complete state space, but doing so would significantly reduce the likelihood of 

achieving a realistic error-covariance. The additional complexity in the implementation of the EKF, 

due to the need for partial derivatives, is less obvious, but is still a relevant comparison point.  

 

Figure 2. Time Update Operations Comparison. 

 

Figure 3. Measurement Update Operations Comparison. 
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Hybrid formulation 

It has been seen in a prior study that, when represented in advantageous coordinates, the state 

error uncertainty distribution can remain Gaussian or near Gaussian even in the case of large un-

certainties while mapping of uncertainty to measurement space is problematic15. Figures 4-5 serve 

to illustrate the difference in covariance realism between state and measurement coordinates in a 

scenario where the state uncertainty is very large. The magenta dots represent samples of an origi-

nally Gaussian distribution which have been propagated for sufficient time to illustrate the curva-

ture of the sample points along the nominal orbit. The yellow ellipsoid, which looks like a line in 

Figure 5, depicts the linear mapping of the error covariance into measurement coordinates. Unfor-

tunately, the yellow ellipsoid depicting the linear propagation of the covariance in Cartesian coor-

dinates is hidden by the green ellipsoid in Figure 4. The green ellipsoids depict the covariance 

resulting from the unscented transform in Cartesian and measurement coordinates in Figures 4 and 

5 respectively. Finally, the blue ellipsoid, which also looks like a line, depicts the linear propagation 

of the covariance represented in curvilinear coordinates in both figures. Though hard to see from 

the figures, the state-error representation in curvilinear coordinates provides an excellent represen-

tation of the distribution of sample points with the blue ellipsoid containing all of magenta points. 

The linear mapping to measurement coordinates, however, provides a poor representation of the 

uncertainty in possible measurement values. The unscented transform does a more satisfactory job 

of capturing the range of values in measurement space. 

The observations above combined with the fact that the EKF and UKF employ the same generic 

filter recursion of alternating time and measurement updates, suggests an interesting possibility. It 

would seem desirable to create a hybrid filter that uses the time update from the EKF and the meas-

urement update from the UKF since the concern over non-linear effects in the filter is mainly jus-

tified in the measurement update. The hope for the hybrid filter would be that run-time performance 

would be close to the EKF, since the time update is typically the most computationally expensive 

operation during orbit determination, while providing a better criterion for measurement acceptance 

and an improved update when processing measurements under the condition of large state uncer-

tainty. 

 

 

Figure 4:  Example of non-linear effects on orbit-error distribution 
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Figure 5: Example of non-linear effects on measurement-error distribution 

METHOD OF COMPARISON 

Evaluation of the relative merits of the EKF, UKF and Hybrid formulations will be based on the 

set of test cases defined in Table 3. Ground tracking was provided from a network of 4 ground 

stations generating range, azimuth and elevation measurements. Test cases were designed in a man-

ner where drivers of uncertainty, mainly gaps in tracking data, were increased until the EKF lost 

track custody in at least one observable type. Specific estimation challenges include large initial 

tracking gaps which allow the along-track uncertainty to grow prior to initial tracking to sizes on 

the order of the tracking baseline, tracking of the HEO primarily around perigee, and a long gap in 

tracking immediately following a significant maneuver.  The orbit uncertainty resulting from these 

challenges was increased to ensure that the EKF results are poor in all but the LEO Baseline test 

case. We note that while the LEO Baseline case provides a scenario where all filter configurations 

performed well, the levels of uncertainty still exceed those typically seen for cooperative tracking.  

Table 3. Test Case Descriptions. 

Test Case Description 

LEO Baseline 
300 Km altitude, 70x70 gravity, drag (20% uncertainty, 180 min half-life)  

Moderately sparse ground-based tracking frequency (range, azimuth, elevation) 

LEO 

Maneuver 

500 Km altitude, 70x70 gravity, with drag (20% uncertainty, 180 min half-life) 

Large apogee raising maneuver (100 m/s intrack, 2% magnitude, 2 deg uncertainty) 

10 hour gap in ground-based tracking after the maneuver (range, azimuth, elevation) 

Sparse HEO 

550 x 40000 Km altitude, 40x40 gravity, SRP (20% uncertainty, 48 hour half-life) 

Large initial uncertainty, intermittent ground tracking (range, azimuth, elevation) 

primarily near perigee 

LEO Formation 

Two satellites in a 500 Km altitude orbit with drag, separated by 4 – 8 Km.  

Large initial uncertainty, inter-satellite tracking (range, right ascension, declination, 

10 min every 3 hours) 
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Test cases were exercised using up to 5 filter variants as listed in Table 4. The augmented EKF 

variants were not evaluated on the LEO Baseline case where the standard EKF performed well. 

The criteria on which the filter variants were evaluated are given in Table 5. These criteria are 

mainly qualitative in nature as we are more interested in behaviors than numerical results from a 

particular set of inputs. 

Table 4. Filter Variant Descriptions. 

Variant Description 

EKF EKF formulation using equinoctial element formulation in measurement update 

UKF 
UKF formulation using = 1 √𝑛⁄  ,𝜅 = 0, 𝛽 = 2. Process noise is mapped to the 

end of the time update window to avoid resampling. 

UKF PN 
UKF formulation using = 1 √𝑛⁄  ,𝜅 = 0, 𝛽 = 2. Process noise is added on a 

regular time grid during the time update window requiring resampling. 

Hybrid EKF time update, UKF measurement update with 𝛼 = 1 √𝑛⁄  ,𝜅 = 0, 𝛽 = 2 

EKF 2nd EKF augmented with measurement update corrections from Gaussian 2nd order filter 

EKF UW 
EKF augmented with measurement underweighting to allow a reduction in covari-

ance of no more than a factor of 10 per processed measurement 

 

Table 5. Comparison Criteria. 

Criterion Description 

Computation 

Time Ratio 

The ratio of the computation time of the current estimation process divided by the 

computation time required for the EKF 

Orbit Custody The acceptance of all types of measurements over time during filtering 

Position Un-

certainty 

The normal, tangential and cross-track components of the formal uncertainty from 

the filter solution. The maximum value of any component is reported in the summary 

tables 

Covariance 

Consistency 

The inclusion of normal, tangential and cross-track position component errors 

within the 3-sigma formal uncertainty from the filter solution 

 

RESULTS 

Relevant results are provided for each test case. Graphs of residual ratios, defined as residuals 

divided by the square root of the measurement-error variance, are used to demonstrate orbit cus-

tody. Nominally, 99 percent of residual ratio values fall within a range of +/- 3. Measurement ed-

iting criteria were set to reject measurements falling outside this range. In cases with ground based 

tracking, range residual ratios are shown in red, azimuth in blue and elevation in green. The +/- 3 

bounds used for residual editing are also displayed on the plots. An excess of residual ratios outside  

of the editing bounds indicates that the filter has lost custody of the orbit solution, at least for a 

particular measurement type. Position uncertainty graphs are used to identify the orbit-state uncer-

tainty estimated by each filter. Position uncertainty is represented in terms of 1-sigma values in the 

normal (to the tangent direction), tangential and cross-track directions. Graphs of position error 
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ratios, defined as position error components divided by the square root of the associated position 

error variance, help identify when the solution accuracy is consistent with the estimated uncertainty. 

 

LEO Baseline 

The LEO Baseline case was designed to have higher than typical uncertainty for a cooperatively 

tracked satellite, but without any severe spikes. All filters performed equally well with qualitatively 

identical results as summarized in Table 6 and depicted by the plots in Figure 6. We additionally 

note that the UKF results showed no qualitative difference between cases where the process noise 

was injected on a regular time grid, thus requiring resampling of the covariance, and when the 

process noise was applied at the end of the overall time update intervals. 

Table 6. LEO Baseline Results. 

Filter Computation 

Time 

Orbit Custody Position  

Uncertainty 

Covariance 

Consistency 

EKF 1 Y ~10 Km Y 

UKF 28 Y ~10 Km Y 

Hybrid 1.2 Y ~10 Km Y 
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Figure 6. LEO Baseline Results. 

Sparse HEO 

The Sparse HEO case was designed to be extremely challenging for the filters to gain custody 

of the orbit. A propagation over three revolutions is included prior to the first observations which 

occur near perigee where the along-track uncertainty reaches a maximum. A graph of the measure-

ment locations as function of altitude is presented in Figure 7. The EKF and Hybrid formulations 

performed poorly in this case and failed to retain orbit custody. The UKF provided a better solution, 

but did require adjustment of the test case due to instances where one or more samples reentered 
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during the time update. A strategy to deal with such errors would be needed in an operational en-

vironment. A tabulated summary of the results is given in Table 7. The UKF PN run produced a 

notable result, the inclusion of PN at sub-intervals within the time update resulted in a large expan-

sion in the size of the orbit-error covariance. An explanation of the mechanism which generated 

the rapid growth is given below. Estimation results obtained from the various filter configurations 

are presented in Figures 8-11.  

Table 7. Sparse HEO Results. 

Filter Computation 

Time 

Orbit Custody Position  

Uncertainty 

Covariance 

Consistency 

EKF 1 N ~150 Km N 

UKF 23 Y ~150 Km Y 

UKF PN 23 Y ~950 Km Y 

Hybrid 1 N ~150 Km N 

EKF 2nd 1 N ~150 Km N 

EKF UW 1 N ~150 Km N 

 

 

 

Figure 7. Sparse HEO Measurement Altitudes. 
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Figure 8. Sparse HEO EKF Results. 
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Figure 9. Sparse HEO UKF Results 
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Figure 10. Sparse HEO Hybrid Results 
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Figure 11. Sparse HEO EKF 2nd and EKF LW Residual Ratios. 

 

A large expansion in the orbit-error covariance in the Sparse HEO case occurred when process 

noise was added at intermediate times during time update intervals. The driving mechanism behind 

the unexpected growth in orbit-error covariance was the generation of new sigma points after the 

process noise inclusion at times when the Cartesian representation of the covariance was a poor fit 

to the actual orbit error distribution. In such cases, the dimension of the position covariance in the 

orbit plane but normal to the velocity direction is increased, during construction of a sample covar-

iance, to accommodate the curvature in the uncertainty distribution. When the resulting covariance 

is resampled, the new sigma points span the larger extent of the constructed sample covariance. As 

a result, the new sigma points have a greater spread in the in-plane normal direction than the sigma 

points prior to process noise inclusion, even if the process noise inclusion itself provides no expan-

sion in the in-plane normal direction. The new larger spread of sigma points evolves to an even 

larger distribution through non-linear propagation until the next process noise update is made and 

the process continues. This phenomenon is most prevalent in the perigee region where the curvature 

in the orbit uncertainty distribution is most curved.  This effect is illustrated in Figure 12. 
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Figure 12. Resampling Effect on Uncertainty Propagation in UKF. 

 

LEO with maneuver 

The LEO Maneuver case was designed to test the ability of the filters to regain custody of the 

orbit after a large maneuver followed by a significant gap in tracking. The 10 hour measurement 

gap after the maneuver allows the orbit uncertainty to grow rapidly due to the velocity uncertainty 

injected with the maneuver. As with the Sparse HEO case, the EKF and Hybrid formulations per-

formed poorly in this case and failed to retain orbit custody. Estimation results obtained from the 

various filter configurations are presented in Figures 13-16. A tabulated summary of the results is 

given in Table 8. 

Table 8. LEO With Maneuver Results. 

Filter Computation 

Time 

Orbit Custody Position  

Uncertainty 

Covariance 

Consistency 

EKF 1 N ~220 Km N 

UKF 26 Y ~220 Km ~Y 

Hybrid 1.1 N ~220 Km N 

EKF 2nd 1 N ~220 Km N 

EKF UW 1 N ~220 Km N 
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Figure 13. LEO Maneuver EKF Results. 
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Figure 14. LEO Maneuver UKF Results. 
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Figure 15. LEO Maneuver Hybrid Results. 
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Figure 16. LEO Maneuver EKF 2nd and EKF LW Residual Ratios. 

 

LEO Formation 

The LEO Formation case was designed to test the ability of the filters to gain custody of the 

orbits of both orbits from conditions where the initial position uncertainty was of similar size to the 

baseline, 4-8 Km, of the inter-satellite measurements. Measurements over short baselines, such as 

those typically associated with formation flight, experience non-linear effects under conditions of 

much smaller state uncertainty than measurements on longer baselines. In this case, the position 

uncertainty, while still large compared to most cooperative tracking scenarios, is slightly smaller 

than the LEO Baseline case described previously. While the standard EKF struggled to lock onto 

the orbits, both EKF augmentation strategies were effective as were the UKF and Hybrid formula-

tions. A tabulated summary of the results is given in Table 9. Estimation results obtained from the 

various filter configurations are presented in Figures 17-20.  

Table 9. LEO Formation Results. 

Filter Computation 

Time 

Orbit Custody Position  

Uncertainty 

Covariance 

Consistency 

EKF 1 N ~7 Km N 

UKF 31 Y ~7 Km Y 

Hybrid 1.2 Y ~7 Km Y 
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EKF 2nd 1 Y ~7 Km Y 

EKF UW 1 Y ~7 Km Y 

 

 

 

 

 

 

Figure 17. LEO Formation EKF Results. 
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Figure 18. LEO Formation UKF Results. 
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Figure 19. LEO Formation Hybrid Results. 
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Figure 20. LEO Formation EKF 2nd and EKF LW Residual Ratios. 

 

CONCLUSION 

By the design of this study, the EKF was pushed beyond its limits in the examined cases. In an 

operational setting, we would recommend using an initial orbit determination method followed by 

a least squares estimator to initialize filter solutions. In this study, however, we created a more 

challenging initialization environment for the filters to test the limits of the algorithms. Algorithm 

comparisons were performed using operationally vetted dynamical and measurement models. Our 

EKF/UKF/Hybrid implementations all include necessary noise modeling and estimation states for 

operational determination. The resulting state size is larger than typical for examinations of the 

UKF and this fact is reflected in the comparative run times. 

The overall summary of our recommendations for filter selection based on the relevance of non-

linear effects in the measurement and dynamical model is provided in Table 10.  For this summary, 

we have grouped the EKF and its augmentations together under the EKF label and the two varia-

tions in the application of the process noise in the UKF under the UKF label. We define the Typical 

category as the vast majority of orbit determination scenarios where non-linear effects are small. 

The Meas NL category includes the set of problems where non-linearity effects are mostly restricted 

to the measurement model. Finally, the Meas NL Dyn NL category includes problems where non-

linear effects are prevalent in both the measurement model and the dynamics.  

The UKF is seen to provide an improvement over the standard EKF in cases where non-linear 

effects in the measurement model become significant. We note two specific sub-cases: when the 
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orbit-state uncertainty is well modeled by the Cartesian representation of the state-error covariance 

and the other where the orbit-state uncertainty is large enough that the Cartesian representation of 

the covariance is not a good representation of the error distribution. The first situation can be real-

ized when a short measurement baseline is involved, such as the LEO Formation test case. In this 

situation, EKF augmentation strategies such as the 2nd order Gaussian filter corrections to the meas-

urement update or measurement underweighting are effective and we find them to be preferred to 

the UKF due to runtime considerations. The EKF is also preferred in cases where non-linearity in 

the measurement model is not significant due to large differences in run times. The Hybrid formu-

lation was also effective under this circumstance since the samples generated from the EKF state-

error covariance in Cartesian coordinates still provided a good representation of the error distribu-

tion.  In the second scenario, where the orbit-state uncertainty is also large, the EKF augmentation 

methods are not as effective and the Hybrid filter performs poorly due to sampling a poor repre-

sentation of the orbit-state uncertainty. In these cases, we prefer the UKF as it can retain custody 

of the orbit under more stressing conditions. We note, however, that the process noise strategy used 

in the UKF time update can have drastic effects on the covariance evolution. Finally, we note a 

preference for the application of process noise at the end of the UKF time update for cases of large 

orbit uncertainty. 

Table 10. Preference Summary. 

Filter Typical Meas NL Meas NL, Dyn NL 

EKF Preferred Preferred Less Capable 

UKF Capable Capable Preferred 

Hybrid Capable Capable Less Capable 

 

We note that UKF, while requiring significantly more computations than the EKF, could be 

designed to perform many of those computations in parallel. This strategy is difficult to evaluate in 

terms of computational performance, however, since effectiveness will be influenced by the num-

ber of processing cores available and the desire to perform orbit determination on multiple objects 

at the same time, as is typical in a SSA application. We also specifically excluded the processing 

of Doppler measurements in this analysis due to the large runtime penalty experienced using the 

UKF. In filter implementations, integrated Doppler measurements require the backwards propaga-

tion of the orbit state over the accumulation interval of the measurement, typically 10 – 60 seconds. 

The sampling strategy used in the UKF also opens the door to issues such as the reentry of sample 

points in low perigee scenarios and non-uniqueness of solutions based on selection of different 

values for the free parameters in the unscented transform. 

The Hybrid formulation developed in this study performs sampling of the Cartesian representa-

tion of state-error covariance from the EKF time update in support of the UKF measurement update. 

In future work, we will investigate a change of the sampling and associated measurement update 

to work in coordinates which are better for state-error representation. We expect this modification 

to improve the range of application of the Hybrid algorithm while retaining its computation time 

advantage over the UKF. We also plan to evaluate estimation results in a more quantitative manner. 

. 

 



 32 

1 Julier, S.J., Uhlmann, J. K., and Durrant-Whyte, “A new approach for filtering nonlinear systems,” 1995 American 

Control Conference, Seattle, WA, pp. 1628–1632. 

2 Julier, S.J., Uhlmann, J. K., and Durrant-Whyte, “A New Method for the Nonlinear Transformation of Means and 

Covariances in Filters and Estimators,” Technical Note in IEEE Transactions on Automatic Control, Vol. 45, No. 3, 

March 2000, pp. 477–482. 

3 Julier, S.J., and Uhlmann, J. K., “A new extension of the Kalman Filter to Non-linear Systems,” AeroSense: The 11th 

International Symposium on Aerospace/Defense Sensing, Simulation and Controls, Orlando, FL, 1997. 

4 Julier, S.J., and Uhlmann, J. K., “The scaled unscented transformation,” 2002 American Control Conference, Anchor-

age, AK, pp. 4555–4559. 

5 Wright, James R., Optimal Orbit Determination, Paper AAS 02-192, AAS/AIAA Space Flight 

Mechanics Meeting, San Antonio, Texas, 27-30 Jan., 2002. 

6 Vallado, D. A. and Seago, J.H., “Covariance Realism,” AAS 09-304, 2009 AAS/AIAA Astrodynamics Specialist Con-

ference, Pittsburgh, PA, August 2009. 

7 Johnson, T.M., “Orbit Prediction Accuracy Using Vasicek, Gauss-Markov, and Random Walk Stochastic Models,” 

Paper AAS 13-280, 2013 AAS/AIAA Space Flight Mechanics Meeting, Kauai, Hawaii, January 2013. 

8 Wright, J. R. et al, “Orbit Determination Tool Kit: Theory & Algorithms”, Technical report, Analytical Graphics Inc., 

2013. 

9 Lear, W. M., “Kalman Filtering Techniques," NASA Technical Report JSC-20688, Johnson Space Center, 

Houston, TX, 1985. 

10 Jazwinski, A. H., Stochastic Processes and Filtering Theory, Dover, 2007. 

11 Lee,D., Alfriend,K.T., “Precise Real-Time Satellite Orbit Estimation Using the Unscented Kalman Filter”, AAS 03-

230, 13th AAS/AIAA Space Flight Mechanics Meting, Ponce, Puerto Rico, February 2003. 

12 Wu, Y., Hu, D., Wu, M., Hu, X., “Unscented Kalman Filtering for Additive Noise Case: Augmented vs. Non-aug-

mented”, 2005 American Control Conference, Portland, OR, June 2005. 

13 Wright, James R., Woodburn, James, Truong, Son, Chuba, William, “Orbit Gravity Error Covariance," AAS 08-157, 

AAS/AIAA Space Flight Mechanics Meeting, Galveston, TX, January 2008. 

14 Woodburn, J. and Coppola, V., “Effect of Coordinate Selection on Orbit Determination,” AAS 13-825, 2013 

AAS/AIAA Astrodynamics Specialist Conference, Hilton Head, SC, August 2013. 

15 Woodburn, J., Tanygin, S., “Coordinate Effects on the Use of Orbit Error Uncertainty”, 2014 International Symposium 

on Space Flight Dynamics, Laurel, MD, May 2014. 

REFERENCES 


