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Abstract 

This paper prescnts a survey of averaging and 
multirevoluticn methods. It emphasizes experience with 
both analytical and numerical averaging. A technical 
qp roach  with the following featuros is recommended: 
(1) averaged variation-of-par'amcter equations, (2) ana- 
lytical expressions for oblateness and third-body effects, 
(3) definite integrals for atmospheric drag and lunar 
effects (for long period orbits), (4) nonsingular equi- 
noctial element formulation, (5) multistep numcrical 
integration processes, and (6)  precise osculating-to- 
mean element transformation. Several orbital predic- 
tlons illustrate the contribution of this technical approach 
to overall accuracy and efficiency. Future development 
of the analytical averaging method in nonsingular coordi- 
nates by automated manipulation of literal series i s  dis- 
cussed. 

Introduction 

Consider the following applications of orbit predic- 
tion methods: 

1. Computation of orbital element time histories 
to support analysis of satellite scientific ob- 
jectives and engineering constraints (for ex- 
ample, launch window studies) 

Statistical determination of the mean ele- 
ments of a satellite orbit at some epoch with 
an accuracy sufficient to allow meaningful 
long-term predictions 

Determination of a gravitational model from 
very large amounts of satellite o r  planetary 
orbiter tracking data 

2. 

3. 

Long-term orbit prediction models a re  most efficient for 
these applications where knowledge of the short-period 
perturbations is not required or where the cost of lnte- 
grating numerically the precision equations of motion is 
prohibitively high. Averaging and multirevolution 
methods for long-term orbit prediction a rc  the subject 
of this paper. Emphasis is placed on the former. 

Averaging methods can be  handled either analyti- 
cally or numerically. The analytical method usually 
requires a "first order" average of the perturbing 
potential. The first  order qualification indicates that 

during the averaging process tho slowly varying ele- 
ments a r e  held constant and that the fast variable? (us- 
ually the mean anomaly o r  the mean longitude) varies 
according to Kcpler's laws. The averaged potential is, 
then, differentiated to obtain the e.xpressions required 
in the variation-of-parameter F O P )  equations of motion. 
The resulting closed-form expressions can be used to 
construct an extremely efficient orbit prediction pro- 
gram. Nowever, the accuracy of the avcraged element 
rates depends on the validity of the various assumpticns 
that a r e  made in deriving the analytical results. A 
typical sct  of assumptions is that made in the computa- 
tion of the averaged third-body potential. The potential 
is expanded in a power series with the ratio of thc dis- 
tance from central body to satellitc to the distance from 
central body to disturbing body treated as a small param- 
eter. The scries is truncated by assuming that higher 
order terms a re  negligiblc. The remaining terms in the 
expression for  the potential are then averaged. To sim- 
plify the averaging process, the assumption is made that 
the disturbing body does not move over one revolution of 
the satellite. However, such assumptions can limit the 
applicability of thc model fo r  particular orbits. 

have the ability to simulate the effcct of any small per- 
turbation that can be  modeled deterministically. These 
effects a re  included by averaging'the time derivatives 
of the orbital elements (including the effects of perturba- 
tions) over one or more revolutions of the satellite using 
a numerical quadrature technique. No mathematical 
modification to the perturbing acceleration model i s  re- 
quired for numerical averaging. However, the right- 
hand sides of the numerically averaged equations of 
motion contain definite integrals that a r e  relatively 
costly in te rms  of computational requirements. 
cost of each derivative evaluation usually is outweighed 
by the large stcpsizes that a r e  possible in the integration 
of the averaged dynamics. 

On the other hand, numerical averaging techniqucs 

The 

Multirevolution methods (particularly as developed 
in References 1, 2, 3, 4,  and 5) also attempt to calcu- 
late accurately the long-term evolution of the orbit of 
an artificial satcllite ahout its central body. 
mental key to this approach is to approximate the deriva- 
tives of the mean elements with respect to time by use 
of a precision integration process. 

The fundn- 

To clarify the 
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issue, compare the VOP precision equation of mo- 
tion, * 

the multirevolution equation of motion, * 

and the numerically averaged equation of motion, * 
= 

(3) 

In the above equations, the following notation is used, 

a =precision orbital element 

am = derivative of aff with respect to tlme 

5 = mean orbital element 

t = t ime  of the derivative evaluation 

T = period of the orhit 

= mean period of the orhit 

ff 

ff 

'- 

A 

Q =perturbing acceleration 

x = velocity vector 

Clearly, the multirevolution equation of motion 
[Equation (2)l  is an integral form of Equation (1). the 
high precision equation of motion. In Equation (2), the 
slowly varying elements, as well as  the fast variable, 
a r e  functions of time. The osculating period represents 
the time from one reference point to the next. The ref-  

erence point is usually the nodal crossing(*) or the 

perifocal passage.'" The numerically averaged equa- 
tion of motion [Equation @)I. i s  a definite integral in 
which the slowly varying elements a rc  held constant and 
the fast variable is varied according to Kepler's laws. 
The in Equation (3) is obtained from the mean semi- 
major axis, 5 ,  using the relationship 

A 

Because.the difference a - B i s  on the order of 
f f f f  

a small parameter of the problem (for example, Jz) ,  the 

' right-hand sides of Equations (2) and (5) a re  closely re- 
lated. However, f rom a computational point of view, 
there i s  a significant difference in the cost of evaluating 
these two expressions. Equation (2) is evaluated using a 
precision integration process; therefore, a starting pro- 
cedure must bo performed for each evaluation of the 
long-term rates (assuming that a multistep integration 
process i s  used). Also, approximately 100 perturbing 
acceleration evaluations a rc  typically required in the 
precision integration of the orbit over one period, T. By 
comparison, the quadrature process that is used to com- 
pute the right-hand side of Equation (3) usually requires 
no more than 12 (or occasionally 24) perturbing accel- 
eration evaluations over each averaging interval 7. TO 
achieve an efficiency with multirevolution methods that 
is comparable with that of the meraged orbit generation 
process, emphasis is placed on developing modified in- 
tegration formulas to solve the finite difference rcpre- 
sentation of the equations of motion. These methods 
require an evaluation of Equation (2) only oncc every 
several orbits. The relation of the multirevolution 
method to Adams' integration is developed in Refer- 
ence 5. 

For long-term predictions where mean element 
accuracy is required, tsvo limitations of multirevolu- 
tion methods seem apparent. F i r s t ,  the method i s  not 
open to the incorporation of analytical formulas in the 
same way that analytical averaging can be used in con- 
junction with numerical averaging. Second, the propa- 
gation of the partial derivatives (the state transition 
matrix) is an open question with regard to multirevolu- 
tion methods. In contrast, much more work has been 
done in the propagation of the partial derivatives of the 
averaged orbital elements (see Reference 6). 

The next section of the paper presents a detailed 
review of the mathematical bases of the various averag- 
ing methods. A survey of current averaging computer 
programs is presented. The following sections con- 
sider the formulation of the averaged orbit generation 
process in nonsinylar variables, appropriate numeri- 
cal  integration procedures for the averaged equations 
of motion, the importance of an osculating-to-mean 
element transformation. and optimization of the aver- 
aged orbit generation process. Numerical examples 
a re  presented throughout that illustrate the experience 
of the authors in thcse areas.  Jnitial state vcctors for 
the test cases a r e  listed in Tables 1 through 6.  Finally, 
a reas  a re  reviewed that a r e  open to further research. 

Averaged Orbit Generation Methods 

This section describes the formulation of analytical 
T = - = Z n  - (4) and numerical averaging methods of orbit computation. 

Emphasis is placed on specifying the analytical expres- 
sions required for an averaging method in a specific s e t  

K - 2 n  
n 

where ii is the mean Kepler mean motion. 

* For simplicity, equations of motion a r e  presented only for the slowly varying orbital elements. However an  
analogous relationship exists for the equations of motion of the fast variables. 

v 
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of coordinates. The rclationship of thc averagcd cqua- 
tions of motion to the precision equations of motion i s  
noted. Recent contributions to the mcthod of averages 
are cited. 

Mathematical Preliminaries 
'd 

-_ 
Averaging methods a re  based on the precision 

VOP equations (see Appendix A for derivation). The 
fundamental features of the equations of motions a re  in- 
dicated in thc formulas for the classical orbital ele- 
ments 

u Note that c i s  a small parameter related to the magni- 
tude of the perhirhing acceleration vector (such as  the 
J harmonic coefficient). Therefore, a, e, i, w, and 

Q a re  slowly varying elements and M is a fast vari.able. 
according to the previous definition. 

Z . 
This formulation i s  identical to Nayfeh's General- 

ized Method of Averaging (Reference 7,  p. 168) with one 
exception. In Equation (5), the natural rate of tho fast 
variable is a function of the slow variable a; whereas 
Nayfeh assumes that the natural rate of the fast variable 
i s  a constant. 

Following Bogoliuhov and Mitropolski, (') a near 
identity transformation is assumed: 

such that the transform of Equation (5) is 

1 
To determine expressions for the functions F 

through F in terms of the known functions f through f 6 1 
Equations ( 6 )  a re  differentiated with respect to time. 
Equations (7) a r e  substituted into these expressions and 
the rcsulting equations a re  siibstituted for the left-hand 
sides of Equations (5). in addition, Equations (0) a re  
substituted into the right-hand sides of Equations (5). 
Expanding and equating cocfficicnts of 2, equations of 
the form 

6'  

a r e  obtained for the slow variables. The quantity f is 

assumed to be the sum off;  (short-period term) and fe 
1 

(long-period term that does not contain the phase angle 

M). Substitution of the dcfinitions for  P and f' into 

Equation (8) results in 

1 

1 1 

Integration over the period (notinp that a 

the phase angle) yields the following result: 

is periodic in 
1 

For convenience, F can also be written as 1 
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For tho phase angle a, the following equation i s  Analytical Averaging Methods 
- obtained: 

For the conservative forces, the perturbed portion 
of the right-hand sides of Equations (5) can be expressed 
as a sum of products of the Poisson brackets and the a M~ 

= f  + n  F + E x  
L 6 6 1  (12) partial derivatives of the perturbing potential (see Ap- 
. .  pendix A for derivation): 

2 3  where the constraint n a = p implies the expansion 

After integration over the period of the system, the fol- 
lowing equation i s  obtained: 

where a. is now the ith orbital element. Because the 
Poisson'brackets depend only on the slow variables (for 
the classical orbital elements to he discussed in this 
section and for  the nonsingular variables to be consid- 
ered in the next section), substitution of Equation (16) 28 

F 6 = $ L  f 6 d R  (14) into Equations (15) results in 

Substitution of Equation (11) for F1, the analogous 

results for the remaining slow variables, and Equa- 
tion (14) for F into Equations (7) give the first-order 

6 
However, under the assumptions that R and a R / S  a r e  

1 
continuous, the partial derivative and the integral sign 

in Equation (11) can be interchanged.") The resulting 
expression i s  

averaged equations of motion: 

28 
6 fl(Z, E ,  . * a ,  G) d % 

d t  

28 
Thus, only the perturbing potential must be averaged, 
not each equation of motion as implied by Equations (15). 
This simplification explains the connection between con- 
servative perturbations and analytical averaging exhib- 
ited in current applications. 

< fg(H, . . . , a) d 3 

(15) 
2n 

dij-  1 cf4(H, .*., i%)dn? 

An alternative to Eauation f16) i s  the Gaussian , .  
form of the VOP equations (see Appendix A for  deriva- 
tion): 

Substitution of Equation (19) into Equations (15) gives 

Equations (15) a rc  the basis of the first-order 
averaging methods that have been widely applied to or- 
hital prediction problems. 

dEi 271 a;. 
This method can be extended x = k l  & . G d a  ax  (20) 

to higher order effects. Nayfeh") presents an exten- 
sive reference list in this area. 

This form for the averaged equations of motion has the 
advantage of being valid for  nonconservative, as  well as 
for conservative, forces. 

4 



A f i r s t  inspection of Equation (20) does not indicate 
the problems encountered in obtaining closed form ex- 
pressions for the right-hand sides. Unfortunately, the 
two-body partial dcrivatives are functions of the phase 
angle k and must be included in the ovaluation of the in- 

--. tegral. Also, for some perturbations (such as atmos- 
pheric drag), tho products (a?ii/a?) . c a r e  not avail- 

able as functions of the slowly varying elements. 
For these perturbations, the perturbing acceleration i s  
a function of the Cartesian coordinates and velocities. 
Thus, the two-body mechanics a re  required for the 
transformation from the slowly varying elements. 

Numerical Averaging Methods 

(10) 

Equation (20) is the basis of numerical averaging 
methods in which the integral in the right-hand side is 
computed by numerical quadrature methods at each point 
where the derivative d.Zi/dt is required. This method 

has the advantage bat the long-term effect of any per- 
turbing acceleration that can be deterministically mod- 
eled can be computed. 

From the point of view of a'system designer who 
wishes to modify an existing orbit gcneration program 
to do averaged orbit generation, application of Equa- 
tion (20) in a numerical averaging procedure i s  par- 
ticularly attractive. I t  appears that only a quadrature 
routine is required to interface with usually existing 
routines for computing [&,/a%] . a. However, for 

which gives 

Substitution of Equation (24) into Equation (21) converts 
Q into a function of only the slowly varying elements and 
M. This approach has been taken in the applications with 
success. Some improvement in the dynamical properties 
of the averaged equations of motion is noted if the aver- 
aging interval corresponds to an integer multiple of the 
periods associated with both M and M'. 

& 

Requirements for Two-Body Results 

Consideration of Equations (18) and (20) shows that 
the following two-body results a r e  required: 

1. A transformation from position and veIocity 
to the slowly varying elements and phase angle 

A transformation from the slowly varying elc- 
ments and phase angle to position and velocity 

Poisson brackets for the slowly varying ele- 
ments and phase angle 

Partial  derivatives of the slowly varying ele- 
ments and phase angle with respect to velocity 

2. 

3. 

4. 

W 

orbits strongly perturbed by atmospheric drag or solar 
radiation prcssurc, it is advantageous to consider the 
near discontinuities in the oerturbim acceleration 

Transformations 1 and 2 a r e  well known for the classical 
orbital elements. The Poisson brackcts for  the classical 
elements a re  given in References 11 and 12. The partial 

~~ ~~~ 1 ~~~ 

in the context of tho quadrature proc~ss.  timi- 
zation of G~~~~~~~~ hIethods, below, for more dEcus- 
sion on this point. ) 

derivatives of elements with respect to velocity a re  avail- 
able in the orbital coordinates, radial coordinates, and 

tangential coordinates. (12, 13) 

Another circumstance deservos some comment. Additional two-body results are required for the 
In Equations (5) the functions f .  were assumed to have no 

slgnificant dependence on time. This assumption i s  
violated if the lonmtudc-dependent terms in the ceomten- 

coefficients of the differential equations that govern the 
partial derivatives of the mean elements with respect to 
mean at Some different epoch' 

1 

tial a r e  included and the satellite orbital periodis if the 
same magnitude as the central body's rotational period. in 
The assumption is also violated in the case of the third- 
body perturbation when the disturbing body's period i s  
of the same magnitude as the satcllite orbital period. 

~ Mathematically, the perturbing acceleration Bnow de- 
pends on two phase angles: 

Several averaged orbit generation pmgrams based 
on the classical orbital element formulation have been 
reported in the literature. Their significant features are 
described in Table I .  A pattern of treating the zonals 
and third-bodv effects via the analvtical avernninr vro- 

v 

~ I. 
cedure can be observed. Thus, emphasis is placed on 

derivation of the third-body potential by use of macbine- 

automated algebra is particularly interesting. 
Kaufman also t r ies  to take into account the third-body 
motion during the averaging period via a low-order 
Taylor se r ies  expansion in mean anomaly. The subject 
of third-body perturbations has also been addressed re- 

cently by Kozai('') and Giacaglia.(20) Certain numeri- 
cal questions seem to remain open. For  example, what 
is the physical effcct of truncating the third-body poten- 
tial at some low order?  What is the effect of the motion 

a -  the derivation of the averaged potential. Kaufman's 
(") Q = Q (a, e, i, w ,  0, M, M') 

(13) 
If M' can be expressed as a function of M. then the 
previously discussed theory wil l  apply. A s  a simple 
example, assume that the two phase angles a re  gnv- 
erned by the unperturbed solutions 

M = M  + n t  0 (22) 

M' = hV + n' t (23) 0 

5 



;is; 

of the third body'duringthc avcraging interval on the 
solution? problem described previously. In addition for applica- 

~ o 0 k - s  paper(15) is interesting because it 
clear the connection between tho formulation of the an- 
alytically averaged equations of motion and the inclina- 

.. ,,: 

diction process using these elements would face the 

tiOnS such as gravitational model development, 
emphasis i s  on using long arcs  of data, and it is not 
convenient to restrict data Span. 

(29) 

v 

tion function, F 

which a re  polynomials in the eccentricity. Later in this 
paper, when averaging methods expressed in nonsin- 
gular variables a re  considered, it will be reasonable 
to inquire about the analogous functions in nonsingular 
variables. 

(i) and the Hansen coefficients, 
imp  

In addition to the work noted above, there have 
been investigations of long-term orbit prediction prob- 
lems with resonance conditions that make usc of nu- 

merical avcraging techniques. @" 22) Finally, several 
investigators have applied averaged orbit generation 

(23-29) 
processes in diffcrential correction applic8tions. 

Averaged Orbit Generation in Equinoctial Elements 

The variation-of-parameters (unaveraged) cqua- 
tions for the classical orbital elements a re  singular for  
small eccentricities and small and near-180-degree in- 
clinations. The practical effect of these singularities i s  
to cause rapid oscillations in some of the orbital ele- 
ments when the orbit is in a near-sin-wlar condition. 
These oscillations a re  detrimental both in orbit predic- 
tion processes and in statistical orbit dctermination 
processes that require orbital predictions. A theoret- 
ical basis for the effects of singularities on differential 
correction processes is developed in Reference 32. 

v j r  

After the equations of motion a re  averaged, these 
singularities remain; however, the frequency of the 
rapid oscillations in the elements depends on tllc orbit 
type and the perturbing acceleration model. The degree 
of difficulty arising from these oscillations also depends 
on the particular application. For example, with a 24- 
hour geosynchronous communication satellite, a very 
rapid motion in the longitude of the ascending node oc- 

curs once every 54 years, (33) concurrent with the time 
of minimum orbital inclination. This motion is signifi- 
cant because the low inclination portion of the long-term 
history is usually chosen as the active satellite lifetime 
to take advantage of "passive" statioakeeping properties. 

With the Radio Astronomy Explorer-B satellite in 
a near-circular lunar orbit, many rapid oscillations oc- 
cur in the argument of perigee over the I-year lifetime 
due to the low orbital eccentricity. To predict this orbit 
with accuracy (using the classical element formulation), 
a variablc-stepsize integration process is required. Al- 
ternatively, a fixed-step integration process ,can be used 
with a very small stepsize. Both of tbesc procedures 
are unnecessarily inefficient. 

For thc dctermination of mean elements. it  might 
be possible to avoid the rapid oscillations by restricting 
the observation data span. 
averages with classical elements could be used. 
ever, long-term predictions made with thc same prc- 

W 
In this case, the mcthod of 

How- 

6 

These singularities can be eliminated from tho 
VOP equations by a reasonable transformation to another 
se t  of elements. Several possible modifications to the 
element se t  a r e  givcn in Reference 32. In general, each 
of these modified sets addresses a specific singularity; 
thus. there is a low eccentricity set ,  a low inclination 
set ,  and a combined low cccentricity/low inclination set .  
Some of the modified se t s  cause difficulties with the 90- 
degree inclination. 

The equinoctial elements(34) have the advantage 
that the partial derivatives of position and velocity with 
respect to the elements, the Lagrange brackets, the 
Poisson brackets, and the partial derivatives of the 
elements with respect to position and velocity a re  all 
free from singularities for zero eccentricities and 0- 
and 90-degrce inclinations. Reference 35 introduced 
the retrograde equinoctial elements, which'are free from 
singularities for zero eccentricities and 90- and 180- 
degree inclinations. All  equations in the direct and rct- 
rograde equinoctial elements have the same form except 
for interchanges of plus and minus signs. This similar- 
ity greatly simplifies the development of an averaging 
method that is applicable to all closed satellite orbits. 
Finally, Reference 36 provides a brief comparison of 
equinoctial elements and 3. low inclination se t  for differ- 
ential orbit corrections. 

The authors have implemented averaged VOP orbit 
generation procedures in two programs--the Earth Satel- 
lite Mission Analysis Program (ESMAP) and the Goddard 
Trajectory Determination System (GTDS). ESMAP is an 
orbit generation program that was built for the mission 
analysis group at Goddard Space Flight Center (GSFC). 
In this program, the averaging process is based on the 
following farm of the VOP equations of motion: 

where R = perturbing potential due to the conservative 

Q = perturbing acceleration for the nonconscrva- 

forces 

tivc forces - 
For this application, the perturbing potential R includes 
the third-body and oblateness effects, and the perturbing 
acceleration?j includes the drag effects and, optionally, 
the lunar effect. A hybrid avcraging procedure has been 
implemented. The averaged element rates arising from 
the conservative forces a re  computed analytically accord- 
ing to Equation (18). The averaged clement rates arising 
from the nonconservative forces a re  computed numerically 
according to Equation (20). 



GTDS is an operational orbit deterniination system 
also supported by GSFC. In this program, a totally nu- 
merical averaging procedure is implemented. The aver- 
aging equations of motion a re  in the form given in Equa- 
tion (ZO), where all the'perturbing forces a re  included 

'4 in the evaluation of the perhirbing acceleration. Consid- 
eration of Equations (18) and (20) shows that the following 
two-body formulas a re  required: 

' 

1. A transformation from classical elements to 
equinoctial elements 

A transformation from position and velocity 
to equinoctial elements 

A transformation from the equinoctial elc- 
ments to position Rnd velocity 

Poisson brackots for the equinoctial elements 

Partial derivatives of the equinoctial ele- 
ments with respect to velocity 

2. 

3. 

4. 

5. 

These a re  developed in Appendix B. 

In the following paragraphs, the perturbing poten- 
tials for third-body effects and oblateness will  be devel- 
oped in equinoctial elements. 

Third-Body Potentialt 

If the final equations a re  to be accurate to the sixth 
order in tho ratio of the satellite distance to the third- 
body distance, the Pn(cos # )  fo r  n = 2,  3, 4, 5. and 6 

a re  required. 

In the present development, the argument cos $ 
can be expressed as 

cos $ = a  cos L + ,6 1 sin L (28) 

where L i s  the true longitude defined in Equation (B-21) 
and 

1 

A h  
OL = f - R  
1 3 

3 

A / \  
y = w * R  
1 3 

are the direction cosines of thc third body relative to the 
equinoctial frame (Figure 4). The quantity R is a unit 

3 
vector from the central body to the third body. Equa- 
tions (28) and (29) a re  valid only for the direct equinoc- 
tial orbit elements. For  the retrograde case, the 
argument cos $ h a s  the form 

r 'r 

A 

cos + = cos L' 1 sin L* (30) 

This paragraph presents the equations for  the 
single-averaged perturbing potential arising from a third 
bodv in terms of the equinoctial orbit elements. The oar- 

where L* i s  the retrograde true longitude defined in 
Equation (B-35)  and 

L . ~~ ~~~~ 

tial derivatives of the potential with respect to the equi- 

variation-of-parameters (VOP) equations a re  presented. 

h 

R3 
noctial elements have been generated and the resulting a =?*. r 

0 r =z* . R, (31) 
The potential employed to model the influence of the 

Moon and Sun on an Earlksatellite is espressed by 
yr = G* . ̂R3 

m 
F 3 = E  F3 

n n=2 

where 

(26) are the direction cosines relative to the retrograde co- 
ordinate frame ( f*, g*, w*) (Figure 5). The resulting 
expressions for the P (cos $ )  are  n 

3 
(27) 

In the above expressions 

p3 = gravitational constant of the third body 

R = distance from the central body to the third 
body 

r =distance from the central body to the 

P = Legendre polynomial of nth order 

$ = angle between the vectors Z and ?i 
v 3 

satellite 

n 

f See Rcference 37 for a more complete description of this work. 

(32) 

+ 35 (Si - 4S;)cos 4L + 1405 S sin 4L 
1 3  

+ 20s (7s - F) cos 2L + 40S1(7S2-F) sin 2 L  
3 2  J 
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P (COS $I) = - 2 [ a1 ( s i  - 2oB;)cos 5L 
5 

W +@,(s i  - 20a:)sin 5~ 

+ 5a1 ( 5 ; -  48;'-;s4) cos 3 L  

+loa  ( s  2 4  - - s  + - ) c o s L  8 

4 8  - 58, (s"3 - 4 5  - s ~ )  sin 31. 

1 2  3 2  2 1  

2 4  8 (32) 
+ 10Sl (s - - S  + -) sin L] 

2 3 2  2 1  (Cont,d) 

5 S 3  1 ( S S  - 488;') cos GL 

+ 3 (si - 88; ' )  (s2 - 

+ 3s1 (si - $ S i  ) sin 6L 

+ 12s1s3 (sz - E) sin 4~ 

. 3 ( 2 11 2 11 
2 4 8  +5S1 35 - - S  + - sm 2L 

where the auxiliary variables S . . a ,  S a re  given by 1' 10 

s1 = c y 1  

s2 -a1 + 8, 

s3 = a  - 8 ,  

s4 = a1 - 3B1 

- 2  2 

2 2  
1 

2 2  

2 2  s5 : 8, - 3a1 

2 2 2  
Ss = 4P1(2a1 - 8,) 

2 2  2 
1 1  

2 2  

s7 = 4 a  (28 -a2 

S8 = a1 - 58, 

-' 2 sg = 81 - 5a1 

(33) 

2 2  (33) 
(Cont'd) SL0 = CYl - 7B1 

These expressions a re  for the direct equinoctial orbit 
elements. Because Equation (30) fo r  the retrograde 
case has the same form as Equation (28) for the direct 
elements, it  follows that all generated results can be 
applied directly, provided one makes the transformation 

L -3 Lk 

a - 3 a  (34) 1 r 

I 8, + 8, 

The potential is averaged over the period of the 
orbit according to 

(35) 

Inserting Equations (26 )  and (21) into the above gives 

The integrals in Equation (36) a re  evaluated via use of 

Hansen's coefficients.(38) An extensive table of the 
Hansen coefficients expressed in terms of the equinoctial 
variables i s  given in Reference 37. 
aged potentials are: 

?he resulting m e r -  

(38) 
G + %A4B4 (alk + 8 

4 
-3 l? = _  p3 "05 A I3 i 4410A7B7 
4 1541'. 3 3  (+) k5.5 8 G G 

(39) 

1 +-A 105 B (S 1' - 4s V ) 
2 8 8  3 3  1 1  

F =- - - - A B  --A 231  B 6w3 -3 
5 128R R3 9 9 1G 10 10 

3 

(40) 
105 105 

- - A  B + - A  B 16 11 11 16 12 12 

- 35A13B13 (elk + 8;") 1 
8 



' . ,  
, ; <: 

429 A ' B  + - A  8 
-3 23w3 3 6  F =- 

6 2561~ (r) [" 3G96 14 14 32 15 15 
3 3  

429 297 
+-A B + - A  B 

8 16 16 16 17 17 

+ 29lAl8Bl8 + 135 AI9Bl9 + 210AZOR20] 

where the auxiliary Vs are 

v =hk 
1 

2 2  V = h  + k  
2 

2 2  V = k  - h  
3 

2 2  V = k  -3h  
4 

2 2  V = 3 k  - h  
5 

2 2 2  
V = 4 h  (Zk - h )  

V = 4 k  (2h - k ) 

6 

2 2 2  
I 

(41) 

and the As and Bs a re  given in Table 8. 

Considering the disturbing functions given in Equa- 
tions (37) through (41) as  well as  the auxiliary quantities 
given in Equation (33). Equation (42). and Table 8, it is 
clear that 

'W' 

(43) 
-3 
F = R(a ,  el. 8,. h, k) i 

The partial derivatives with respect to h and k can he 
taken in a straightforward manner. For  the variations 
with respect to p and q, further analysis i s  required. 
particular 

In 

and 

aa 
aR aR 1 aR 301 
aq aml aq ab, aq 
_ = -  - + -  - 

Going back to Equation (29), it follows that 

(45) 

Returning to the VOP equations, it  i s  seen that these 
equations contain the term 

aR aR 
P-+ 4- ap aq 

Employing Equations (44) and (45) for a R / a p  and 
aR/aq with Equations (47) allows one to write 

- 2Yl aR aR 
p - + q -  = 2 2 ( P E  - q%l I) (49) 

ap aq ( l + p + q ) -  1 

Employing the identity 

(50) 

the VOP equations adopt the form 

(51) -=  da 0 
d t  

9 



Adopting the convention 
v 

-3 
Fi R +  

to obtain the final form for the VOP equations, the partial 
derivatives 

must be generated. 

Inspection of Equation (33),  the Sia, Equation (42), 

the V.s, and Table 8, the A.s and Bis, yields directly 
that I I 

a A  as as. 
aAi i i _ = _ = _ _  1 - 0  , 

aBi aBi avi av 
F = a g ; ' a a l  ap, 

ah ak ah - ak 

_ =  -'a0 

. and the relevant equations are: 

F3 Derivatives 
v 2 

, a?: F=q($) p3 2 ll&+ a B  15 

(57) 

./ 

p3 Derivatives 
3 

-3 
aF3 2511, a aB2 7 3% -=F(F," [LA 8 2 a k  -+-A 8 3 a k  - 

3 3  ak 

(59) 

7 aA3 B + - - B  
2 8 aal 3 

(59) . .  
(Cont'd) 

, 6  6 +- kA B + - B  ((I k + p  
5 4 4  5 4  1 1 

F3 Derivatives 
4 

1 
a h - 6 4 R 3  _- (ij) - [A5,+7A6, 

1 

a B8 + S V ) - + 105 A B (2hS1 + kS3) 
3 3 a k  8 8  

aFi  p3 aB5 2205 a B6 

aBl 105 
(60) + 4410 A7 3 + 7 A8(4S V 

1 .1  

8 8  1 3 
+S V )-+105A aB8 B (ZkS - h S )  

3 3 ah 

2205 aA6 B c- -  
5 8 a(Il 6 1 

aA7 105 
+4410-B +-B ( 4 s  V a a 1 7  2 8 1 1  

1 a +S V )-+ 105A B (2L?lVl+u1V3) 3 3 a m l  8 8  

10 



. .d 
: ; I,' 

p3 Derivatives 
6 

-3 
aF6 23W3 aB14  - , . - A  429 a __ B15 

3.47 105 (60) - a k  =- 256R3 ({f [ A A 1 4  ak 32 15 ak (Cont'd) +4410-B + - B  (45 V I 2 a 1 1  as1 

+-A 429 a B I G  + - A  297 a B 1 7 + 2 9 7 A  - aBltl 
8 16 ak 16 17 ak 18 a k  

135 aB19 +-A 
2 19 ak 

1 3% 
+ 5  V ) -+ 105A B ( 2 a 1 V 1 - s 1 V 3 )  

3 3 as, 8 8  

-3 F Derivatives 
5 

-3 
aB9  + - A  231 a B I O  

a k  128R3 * 9 a k  16 ] O a k  

-3 
aFG 23W3 aB14 + - A  429 - aB15 _ = _ _  A -  
a h  256R3 (e[ [- 3696 14 ah 32 15 ah 

429 a B I G  297 aB17 9 8  
+ 2 9 7 A 1 8 a h  

135 aB19 

+ - A  - + - A  __ 
105 aBll 105 3% 8 16 a h  16 11 ah  +-A 

+35ffiAi3Bi3 16 11 a k  a * i z ~  

+-A 
(62) 

2 1 9 T  + 35A (a k + blh) 
-3 

aF6 23W3 aA14 429 aA15 -=- 256R3 (i$ [&G 7 14 + a(y1 B15 
8% 

13 1 

aB12 + 3 5 8  A B 105 aB1l 105 
+ 16 A11 -3i- - T A12 ah 1 13 13 

W 

135 aA19 aA20 +- - + 270 
+ 3 5 A  13 (a 1 k+blh)-- aB13] ah (61) 2 aa, 19 

105 aA12 
+ 35 kA13B13 

- _  __ 105 aAll +- - 
16 aa, 11 a a? 

+ 3 5 B  ( a  k c s  ht3 
13 1 1 aa, 

aA 3 
aAia +297 - 429 297 aA17 +- - + - -  a aB1 B i ~  IG ag, B i ~  ab, Bis 

The derivatives of Ai and Bi with respect to the relevant 
variables a re  obtained from the definitions given in 
Table 8. These derivatives a r e  also listed in Refer- 
ence 37. 

231 a A I O  
' 9 + ~  i o  

105 aAll 105 5 * Oblateness Potential 
Biz + 35yi3Bi3 ' 16 as, B i i - ~  aB, +- - 

This oaraeraoh eives the equinoctial variation-of- 

U 

. 
parameters (VOP) equations for the oblateness potential. 
The model employed in this analysis consists of the ob- 
lateness potential arising from the contributions of the 
J , J , and J harmonic coefficient terms. The ensuing 

contributions to the total VOP equations are given in 
2 3  4 
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terms of the nonsingular equinoctial orbit elements, bo& 
for direct and retrocgade orbits. 

The individual contributions to the oblateness po- 

tential(39’ 40) for the J2, J3, and J harmonic coeffi- 

cient terms, respectively, a r e  
4 

2 3/2 
sin (L: sin i [i sin2 i - I] (64) ‘30 = 3e ( I  - e ’ 

2p4 

F40 = 3(1 -e’,””{( l e - e  i . 2 )  ( 1 - 5 s l n  
8P5 

1 (65) +y (6 - 7 sin i ) sin i cos 2w 2 2 
2 

The quantity P appearing in the above expressions is the 
semilatus rectum. These expressions can be trans- 
formed into corresponding forms in terms of the equi- 
noctial orbit elements by employing the definitions given 
in Equation (B-1) together with the auxiliary variables 

2 2  b = 1 - h  - k  

2 2  c = p  + q  

d = l + c  

VI = kp - hqI 

1) = h q - k p I = -  

(66)  

QlI  2 

V = hp +kqI 3 

The symbol I bas the meaning given in Appendix B. 

Defining the sums 

s = 1 - 4 c + c  2 
1 

2 s = 1 - 3 c + c  
2 

2 s = 3 - 8 c + 3 c  

S = I  +4Oc + I C  

S = 1 - 16c + 36c2 - 16c + c 

3 

2 

(67) 
4 

3 4  
5 

2 3 4  s = 1 + 2 c - 3 c  + 2 c  + c  
6 

2 3 4  s = 1 - 8 c + 1 8 c  - 8 c  f C  I 

12 

2 3 4  (67) 
(Cont’d) S8 1 - 40c + 40c - 40c + c 

gives r ise  to the expressions, 

for  the J Contribution: 
2 

for the J contribution: 
3 

for the J contribution: 
4 

(70) 

The VOP equations for the oblateness potential 
associated with the J harmonic coefficient a r e  

2 

where 
- 
d = I - c  

2 S = 1 - 6 c + 3 c  
9 

f i e s e  expressions a r e  valid for both the direct and ret- 
rograde orhita. For the retrograde case, I = -1 must 
be employed. 



The VOP equations for the oblateness p ten t ia l  where 
associated with the J harmonic coefficient a r e  

2 3 4  3 
= 1 - 15c i 4 0 c  - 25c + 3c 

~ S12, 

( P - b V  - 4 k V 2 1 ) - k v 2 J S  I t 2 3 4  S = 3 - 24c + 50c - 40c + 9c 
10 I 13 3 

dh _ = -  '-* 

2 3  
SI4 = 18 - 65c + 40c + 3c e j2S (q - k ?I3 + 4h q2) + h TI2 d SloI 

2 
SI5 = 2(1 - 5c + c ) 

3pR3 J 
dk 

dt 2na b d 
_ =  - 

6 3 3 1  2 

(13) 

N d e r i c a l  Results 

As indicated previously, the accuracy of analyti- 
cal  averaging fo r  third-body perturbations on long- 
period orbits is unresolved. 
include: 

1. 

The remaining questions 

I W R: J3 f (P V31+3q V2) I h  5 6 3  1 -  
d2 

dp -= 
dt 4M b 

(q V31 - 3P VZI) 1 
I What i s  the effect of holding thc lunar posi- 

tion fixed during the process of averaging 
the disturbing potential? 

3, 
d2 

6 3  dt 4na b 

where 

(74) 
2 Sl0 = 1 - 13c + c 

The VOP equations for the oblateness potential 
associated with the J harmonic coefficient term a rc  4 

2. Do higher order terms in the Legendre 
expansion improve the results? 

To provide some physical insight in thesc areas,  
the analytical theories derived in the previous para- 
raphs have been tested on the NEMD orbit (see Table 1 
for initial conditions). The results of this effort  a r e  
given in Tables 9 and 10. In each case, the heading at 
the top of the table indicates the smallest term included 
in the particular simulation. The results of a numer- 
ically averaged orbit prediction run were used as a 
reference.* In all cases the deviations decrease as  
higher order terms a r e  added. However, the decrease 
in the e r r o r  is not a smooth function of the highest or- 
de r  te rm included. Specifically, the improvement aris-  

ing from the ( a h 3 )  term is much larger than that from 

the (a/R3) term. Numerical results for the (a/R ) 

t e rm a r e  not complete at this time. It seems clear 
that the higher order terms in the Legendre expansion 
for the third-body disturbing potential definitely reduce 
the e r ro r s  in the analytical averaging process. 

4 

3 6 
3 

Additional results relating to the accuracy of 
(75) 

-= dp 
dt 8na b d 

IjhV S - q [14v2 2 averaging processes a r c  Contained in References 37, 
41, and 42. 

15p R: J4 2 
7 4 3  1 2 3  

-'(b2+ k 2 ) S  -S15 
2 3 

Numerical Integration Procedure 

Considerable research has been performed on the 
problem of determining the most efficient numerical 
integration procedure for  solution of the orbit problem. 
Multistep predictor-corrector procedures have been 
shown to be significantly more efficient for this applica- 
tion than single-step methods (Reference 43). In par- 
ticular, an evaluation of various multistep numerical 

v 
* Only the lunar perturbation was numericaUy averaged. Ohlateness and solar perturbations were treated with 

analytical averaging. 
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integration formulas (Rcference 4 4 )  has shown that the 
Adams-Bashforth predictor and Adams-Moulton correc- 
tar formulas are,  in general, most efficient for integra- 
tion of the Class I orbital equations of motion3 For 
these reasons, multistep Adams integration procedures 
have been used in our orbit generation subprograms. 

To achieve the maximum possible efficiency from 
an averaged prediction method, care must be taken that 
the integration stepsize is limited as much as possible 
by accuracy rather than numerical stability considera- 
tions. In maximizing the numerical stability charac- 
teristics of an orbit generator, both the numerical 
integration process and the equations of motion must he 
considcred. The following factors a re  important in this 
regard. 

1. The integration algorithm 

2. 

3. 

The order of the integration formulas 

Special treatment of discontinuous perturha- 
tions 

The authors (Reference 41) have evaluated various 
predictor-corrector algorithms using integration orders 
ranging from 4th to 11th for integration of the VOP equa- 
tions of motion, both precision and averagcd. For in- 
tegration of the precision equations of motion, 11th-order 
integration formulas used in a Predict, Evaluate, Cor- 
rect ,  Partial-Evaluate (PECE*) algorithm were found to 
be most efficient for most applications. In this case, the 
partial evaluation of Equation (19) involves a reevaluation 
of thc two-body partial derivatives and use of the pcr- 
turhing acceleration computed in the first  evaluation.tr 
m e  Predict, Evaluate, Correct, Evaluatc (PECE) algo- 
rithm was found to be the next most efficient algorithm 

followed by PE and PE(CE)". However, for integration 
of the averaged equations of motion, use of a PECE* al- 
gorithm coupled with 11th-order integration formulas 
unnecessarily limits the integration stepsize. The more 
stable PECE algorithm is,  appropriate for this applica- 
tion when used with integration orders ninth or lower. 

This conclusion is demonstrated in Table 11. 
where results a r e  presented from a calibration of the 
numerical averaging orbit generator for  a 3O-day 
prediction of the AE-C circular orbit (see Table 2). 

Errors a re  listed that were obtained in the radius 
of perigee, r and in the mean longitude, X, predic- 

tions. The total number of force evaluations required 
for a 3n-day prediction, which is directly proportional 
to the computational cost, is also listed. This compar- 
ison of the PECE* and PECE algorithms demonstrates 
that the relatively small stepsizes that must be used with 

P' 

t A Class I differential equation is of the form 

4 = f CY, X) 

t t  A reccnt investigation (Rcference 45) hns shown that for 
includes a reevaluation of the dominant perturbing accel 

14 

the PECE* algorithm severely limit i ts  efficiency. The 
authors plan to investigate increasing the efficiency of 
an averaged orbit generator by the use of a modified 
PECE: algorithm in which the dominant perturbation i s  
reevaluated. 
exhibit a numerical stability near that of the PECE algo- 
rithm at a considerably reduced cost. 

It i s  thought that such an algorithm will 

In addition, an examination of results in Table 11 
that were obtained using a PECE algorithm yields the 
conclusion that; for large stepsizes, reducing the order 
of the integrator improves both the resulting accuracy 
and the efficiency. The improvement in efficiency ar i ses  
from a reduction in the number of correction iterations 
required for convergence of thc multistep starting pro- 
cedure. 

In the numerical computation of averaged element 
rates arising from discontinuous perturbations (such as 
drag and solar radiation pressure),  a more accurate 
evaluation of the averaged element rates can be achieved 
by evaluating the averaged derivatives only over the in- 
terval of nonzero perturbation. In such cases, the equa- 
tion for the averaged element rates is evaluated as 
follows: 

where F = value of the eccentric longitude at time 
0 

t0 - 
daa - 
dt = averaged orbital element rate 

= orbital element rate arising from the p] C continuous perturbations 

[%ID = orbital element rate arising from drag 

= orbital element rate arising from solar 
S radiation pressure 

some satellite orbits a final partial evaluation that 
eration i s  optimal. 



n 

a 

r 

F l  

F2 

F3 

F4 

v 

= Kepler mean motion 

= semimajor axis 

= magnitude of the position vector 

=value of the eccentric longitude at en- 

=value of the eccentric longitude at exit 

=value of the eccentric longitude a t  entry 

= value of the ecccutric longitude at exit 

trance into tho atmosphere 

from the atmosphere 

Into sunlight 

from sunlight 

The quantities F and F a re  determined using hvo-body 

mechanics. The quantities F and F a re  obtained by 

solving the shadow equation given in Appendix C. The 
consequent elimination of irregularitics from the deriva- 
tive history improves the stability of the equations of mo- 
tion, permitting thc use of a larger stepsize. 

1 2 

3 4 

This effect has been dcmonspated for the case of a 
discontinuity in thc drag perturbation. In Tables 12 and. 
13, results from a calibration of a numerically averaged 
orbit generator a re  shown for predictions of the AE-C 
elliptic orbit (sce Table 3) of length 30 and 90 days, re- 
spectively. The procedure that averages the effects of 
the total perturbing acceleration vector in a single 
quadrature is lnbclcd "single quadrature. The proce- 
dure that averages the effects of drag and the effects of 
the continuous perturbing accelcrations in two separate 
quadrature computations. is labeled "two quadratures. 
An inspection of the accuracies achieved with these hvo 
procedures shows that, without special treatment of the 
drag perturbation, the stepsize is limited to hours. 
However, when the averaged element rates caused by 
drag are  compntcd only ovcr the drag perturbed region, 
stepsizes as large as  3 days yield comparable accuracies. 

v 

' 

A comparison of the accuracies achieved in 30-day 
prediction using various integration ordcrs with the two 
quadrature process indicates the orders 5 through 9 
yield identical results for stepsizes as large as 2 days. 
However. the efficiency of the lower orders is greater. 
On the other hand, if the same comparisou is made for 
the 90-day predictions, an order 5 integration process 
i s  clearly superior to orders 7 and 9 for use with the 
2-day stepsize. This occurrence is an indication of 
numerical instability in thc seventh and higher order 
integration processes. This instability does not 
manifest itself in the 30-day predictions due to the small 
(about 10) number of integration steps involved. 

In summary, a suitable integration procedure for 
the averaged equations of motion combines Adams multi- 
step integration methods (of orders 4 through 7)  with a 
Predict, Evaluatc, Correct, Evaluate integration 
algorithm. 

v 

Osculating-to-Mean Element Conversion 

The questipn of the importance of using mean 
initial values for the orbital elements with an aver- 
aged prediction method is the subject of current re- 
search. The use of initial osculating elements rather 
than mean elements results in a phase difference be- 
tween the mean and osculating orbits that increases 
much more rapidly with time than if mean elements 
had been used. For long-term calculations of orbital 
element histories for which this type of disagreement 
with the osculating orbit can be tolerated, mean initial 

elements probably a re  not needed.('4) However, for 
apphcations of averaging methods such as prediction 
of tracking schedules o r  orbital lifetimes, the conver- 
sion of osculating initial conditions to mean can make 
the difference between satisfactory and unsatisfactory 
methods of prediction. In addition, for the statistical 
determination of mean elements using the averaged 
equations as a dynamical model, a priori mean ele- 
ments increase the probability of convergence of a 
least-squares estimation procedure. Therefore, to 
take full advantage of the possible applications of an 
averaged prediction capability, the conversion of oscu- 
lating to mean elements is required. This section dis- 
cusses various conversion procedures and presents an 
evaluation of the resulting mean elements. 

The conversion of osculating to mean elements 
can be handled either analytically o r  numerically. 
best known analytic method is an iterative procedure 

based on Brouwer theory. (40' 46)  This approach is 
limited by the fact that drag and lunar-solar effects a r e  
not included in the conversion. It will be demonstrated 
below that for strongly drag-perturhed orbits such as  
the AE-C elliptic orbit (Table 3) or  strongly lunar- 
perturbed orbits such as the IMP type (Tables 5 and 6 ) ,  
this is a significant limitation. 

The 

A numerical conversion can be performed using 
either of the following procedures: 

1. Differentially correcting the initial state 
vector using high-precision observations 
and an averaged prediction model. 

Solving the se t  of integral equations 2. 

- a (t ) = -  f o ?  a (Y (t)dt 
a 2nT tO-T/2 

(77) 

where T ( t  ) = mean orbital element at the 
time of interest a 0  

T = mean period 

a (t) =osculating orbital element 
a at time t 

In hoth of these procedures. the appropriate length for 
the averaging interval also deserves consideration. 
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.' Musen and Smith(47) used a procedure related to proce- 
dure 2 abovc to compute mean orbital elements for  an 
IMP orbit similar to that given in Table 5 that has a 
6 4 a y  period. In this regard, f iey computed the mean 
period over an interval equal to approximately the lunar 
period (five satellite revolutions). The mean dements 
were then computed over one o r  two mean periods. The 
authors a re  investigating the possible advantage of using 
multirevolution averaging intervals in the conversion 
pmcess to more exactly average out the effects of medi- 
um period oscillations. For example, for the IMP mis- 
sion orbit (Table 6 ) ,  which bas an orbital period that is 
in nearly 2:1 resonance with the lunar period, use of a 
two-revolution averaging interval is being investigated. 

- 

The authors have experimented with the above 
methods to obtain mean elements for several orbit 
types. Figure 1 presents a comparison of semimajor 
axis predictions that were obtained using a high- 
precision, time-regularized orbit generator with pre- 
dictions obtained using a numerical averaging orbit gen- 
erator. The test case is tho AE-C elliptic orbit 
(Table 3)  perturbed by J2 and J harmonic effects, so- 

lar and lunar point mass effects and atmospheric drag. 
Clearly, for this orbit, the use of Brouwer mean ele- 
ments offers no improvement over the use of osculating 
initial elements. The mean elements labeled "type 1" 
were obtained using procedure 1, given above. 

3 

The Differential Correction procedure that was 
used in this conversion consists of a weighted least- 
squares estimator coupled to a numerically averaged 
orbit generation process. The partial derivatives of the 
state vector with respect to the initial state vector a r e  
approximated by analytical two-body expressions. The 
Differential Correction was performed over one revo- 
lution of simulated observations, which were computed 
using a high-precision orbit generator. Figure 1 shows 
that the prediction obtained using the mean elements 
computed using the first  conversion procedure is clear- 
ly superior to that obtained using osculating initial con- 
ditions. 
prediction aftcr 80 days can arise from small errors in 
the initial mean orbital elements. The appearance of 
this discrepancy in a region of rapid semimajor axis 
decay can also be an indication of a breakdown in the 
correctness of the averaging assumption of constancy 
of the slowly varying elements over one orbital period. 

An implementation of the second conversion pro- 

Y 

The divergence of the mean from the osculating 

cedure has been suggested previously by IJph~ff.(~*) He 
suggests performing a one-revolution precision numer- 
ical integration and, at the same time, evaluating 
Equation (77) far the mean semimajor axis at each in- 
tegration step. This procedure is terminated when the 
integration time is equal to the mean period derived from 
the y r r e u t  value computed for the mean semimajor axis. 

The authors a r e  currently implementing conver- 
sion procedure 2 ,  above, in the following manner. 
the integral equation for the mean semimajor &yis 
[Equation (17 ) ]  is solved iteratively to obtain the mean 

Fi rs t ,  
v 

period. The required values of a ( t )  are computed from 
the position and velocity vectors a t  time t, which a re  
obtained by interpolation from a file of accelerations 
that were computed using a high-prccision orbit gener- 
ator. This procedure will be available for conversion of 
input conditions a t  the beginning of an ephemeris gen- 
eration or  differential correction run, as well as for the 
conversion of the converged osculating results at the end 
of a differential correction run. 

Optimization of Averaging Methods 

Because the chief advantagc of averaging methods 
is their efficiency, considerable attention has been paid 
to maximizing this characteristic. This problem can be 
approached from two directions: 

1. Reduction of the cost-per-integration step of 
evaluating the orbital element rates. 

Reduction in the total number of integration 
steps required .for computation of a given a rc  
by improving the accuracy and numerical 
stability of the equations of motion. 

2. 

This section discusses the application of these tech- 
niques to optimization of averaging methods. 

In cases for which the averaged derivatives are 
computed numerically, the cost of a derivative evalua- 
tion can often be reduced significantly by choosing the 
lowest quadrature order that gives the desircd accuracy. 
However, this choice i s  orbit-dependent. 

For example, for predictions of the AE-C circular 
orbit (Table 2), use of a 12th-order quadrature for com- 
putation of the averaged rates yields nearly the same re- 
sults as use of a 24th-order quadrature. This conclusion 
i s  demonstrated in Table 11 for a computation of the nu- 
merically averaged rates arising from the total perturba- 
tion model. 
circular orbit predictions that were made using analyt- 
ically averaged expressions for  the rates arising from 
J , J , solar, and lunar effects and a numerical quad- 

rature technique for computation of the averaged rates 
arising from atmospheric drag. An examination of these 
results indicates that among the orders tested, a 12th- 
order  quadrature is probably optimum for computation 
of the averaged rates arising from atmospheric drag. 
Results presented in Table 17 for computations of the 
ESSA-8 orbit (Table 4) using a numerically averaged or- 
bit generator demonstrate that a 12th-order quadrature 
can be used successfully for this application as well. 
Similarly, in the numerical computation of the averaged 
rates caused by lunar effects f o r  the IMP-J orbits, a 
9th-order quadrature was found to be sufficient for 

most a p p l i ~ a t i o n s . ' ~ ~ '  This result is demonstrated in 
Figure 2. Nearly equivalent orbital predictions were 
obtained with a 9th-order quadrahre  as with a 24th- 
order process. 

Table 14 presents a comparison of AE-C 

2 3  

On the other band, for the AE-C elliptic orbit 
(Table 3),  a 24th-order quadrature was found to be nec- 
essary for computation of the averaged rates arising 
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from both atmosphcric drag and continuous pcrturba- 
tions. Figure 3 dcrnonstrates this conclusion for com- 
putation of the averaged rates arising from atmospheric 
drag. Figure 3 presents a comparison of semimajor - axis predictions for the AE-C elliptic orbit. In these 
predictions, analytically averagcd expressions were 
used in the computation of the averagcd rates arising 
from the Jz, J , solar, and lunar perturbations. A 

numerical quadrature was used only in the computation 
of the perturbing acceleration arising from atmospheric 
drag. As the order of the quadrature is increased, the 
predictions approach the solution obtained using the 24th- 
order solution. A prediction was also made using a 
23rd-order quadrature process. The predicted semi- 
major axis agrces to within 4 kilometers at BO days 
with the 24th-order solution. This result indicates that 
for predictions in this accuracy range, a 24th-order 
quadrature is necessary. 

3 

In addition, it might be possible to reduce thc cost- 
per-integration step by using an analytical model rather 
than a numerical method for computing the averaged dc- 
rivatives. Because analytical models usually are based 
on a set  of limiting assumptions, care must be taken that 
the model is appropriate to the orbit of interest. Good 
examples of this a r e  NEMD calculations (Tables 1, 9, 
lo), which were made using a hybrid avcraging proce- 
dure. The zonal harmonic and the solar effects were 
computed analytically m d  the lunar effects were com- 
puted either analytically or numerically. For the same 
stepsize, the ratio of tho corresponding computational 
cost was  1:G. 
possible to achieve a substantial improvement in the 
efficiency of an averaged orbit generation process by 
using the appropriate analytical expressions for the 
averaged element rates in place of numerical averaging 
computations. The authors plan to extend their inves- 
tigation ta include comparisons of analytical and nu- 
merical averaging computations for  oblateness and solar 
point mass effects within the same program structure. 

The following a re  methods for reducing the total 

This result indicates that it might be 
W 

number of integration steps required to achieve a certain 
accuracy. A reduction in the e r ro r  that is introduced at 
each derivative evaluation reduces the resulting global 
e r ror ,  permitting the use of larger integration step- 
sizes. Special treatment of the equations of motion 
arising from discontinuous perturbations, which w a s  
discussed above, is an improvement that falls in this 
category. 
aging interval to a v e r q e  out the medium period effects 
of .a resonant perturbation more completely might also 
produce a similar improvemcnt. This smoothing proc- 
ess results in increased numerical stability in the equa- 
tions of motion. Such a stabilization effcct is indicated 
for computation of lunar effects on the I M P 4  mission 
orbit (see Table 6) for which a near 2:l resonance 

exists between the lunar and satellite periods.(42) Re- 
sults from 3-year predictions that were computed by 
numerically averaging over one and two revolutions 
a r e  presented in Tables 15 and lG, respectively. A 
coniparison of these results shows that the latter 
process yiclds a slower growth of e r r o r  with stepsize. 

In addition, choosing a multirevolution aver- 

W 

A carcful choice of the perturbation model can 
reduce random er rors .  
satellite, such as ESSA-8 (TLble 4), the inclusion of the 
tesseral and sectoral harmonics in the 4 x 4 gravitational 
model used in the integration of the averaged dynamics 
severely increases the e r r o r  of the prediction for a 
given stepsize. This conclusion was derived from the 
results presented in Table 17. For this orbit, at a step- 
size of 2 days, the e r r o r  in a 14-day semimajor axis 
prediction incrcases from 0.0003 kilometer to 0.13 kilo- 
meter with the addition of the tesseral  and sectoral har- 
monics. 
dominant harmonic terms in the gravitational model 
shows that the only important tesseral and sectoral terms 

a re  of order 13 . '~~ '  Therefore, the inclusion of tes- 
se ra l  and scctoral terms in the gravitational model 
introduces unnecessary e r rors ,  rather than improv- 
ing the solution. This conclusion has been substan- 
tiated in Differential Correction (DC) studies performed 
on E'SSA-8 data using a numerically averaged prediction 
model to obtain mean elements. In this investigation, a 
DC w a s  performed a t  one eboch, the converged results 
were propagated for 14 days, and a second DC was per- 
formed at this second epoch. 
verged state vectors were then compared with the 
corrected osculating state vector. The results of these 
comparisons, which a r e  given in Table 18, show that 
smaller residuals and comparable prediction e r ro r s  
in the position vector were obtained using a fourth- 
order zonal model, compared to results obtained using 
a full fourth-order gravity model. It is possiblc to use 
a stepsize as large as 12 hours with the fourth-order 
zonal model. Whereas, the prediction e r ro r s  in 
Table 17 indicate that this would not be possible with 
the full fourth-order model. Clearly, the appropri- 
ateness of the perturbation model to the satellite orbit 
of interest should be given careful attention. 

Fo r  the case  of a close-Earth 

An analysis of this orbit to determine the 

The predicted and con- 
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Future Work 

At  several points this paper, specific problems 
areas  were identified. .This paragraph provides a uni- 
fied discussion of thosc aspects of the method of aver- 
aging that require further consideration. 

- 
As indicated in the section entitled Optimlzatlon 

of Averaxing Methods, numerical evidence (based on 
testing of ESBIAP for the NEMD case) Indicates that 
analytical averaging can be much more efficient than 
numerical averaging procedures in terms of computa- 
tional cost. Hoaever, some perturbations (notably at- 
mospheric drag) do not readily admit to an analytical 
averaging process. Thus, in  general, a hybrid aver- 
aging method might be optimum in which oblateness and 
lunar-solar effects a re  treated analytically and drag is 
treated via numerical quadrature. As  yet the question 
has not been resolved of whether the same computa- 
tional advantage remains when an analytically averaged 
orbit generation process is called by a complicated 
trajectory program, such as GTDS, which has various 
interface complexities including ephemeris files, so- 
phisticated triggering options, and comprehensive input 
and output options. This problem deserves further con- 
sideration. 

Further development of analytically averaged 
equations of motion in  terms of the cquinoctial elements 
is neodcd. While the nonsingular variables have defi- 
nite advantages, many analytical results that are rele- 
vant t~ thc method of averaging have been derived only 
in terms of the classical orbital element formulation. 
For example, consider the role played by the inclina- 

1, k tion functions F (i) the Hansen coefficients X,, , 
which are used in the lunar-solar disturbing function 
and in tho gravitational potential. In terms of these 
functions, the analytically averaged equations of motion 
for the lunar-solar and gravitational perturbations can 

be expressed in a very concise form.(15’ The analogs of 
these functions probably exist in nonsingular variables 
but their derivation represents a comprehensive task in 
terms of algebraic manipulation. For this application, 
the use of a computer program for the automated ma- 
nipulation of literal Poisson series is recommended. 
R. Broucke, Jet Propulsion Laboratory, has initiated 
an effort to modify an existing Poisson series manipula- 

tion system(4g) to work in equinoctial coordinates. A t  
present the Keplerian portion of the system has been 
modified to treat  h and k as polynomial variables and X 
as a trignometric variable. The following series have 
been generated: F - X. sin (F - A) ,  cos (F - X), sin F, 
cos F, a / r ,  and r/a. The completed nonsingular 
Keplerian processor will have the capability to generate 
analytically averaged equations of motion. 

v 

b P  

The’disadvantage of the choice of h and k as poly- 
nomial variables is that h and k a re  treated as small 
parameters. It might be possible to modify the set  of 
nonsingular variables such that the Poisson ser ies  
processing Is exact. One modification of the element 
set  is givcn in Chapter 5 of Reference 41. 

v 

An averaged orbit generation method based on the 
formulation in Reference 41 deserves consideration 
from another point of view. Due to the simplified equa- 
tions of motion, the derivation of the differential equa- 
tions for the state transition matrix is greatly simplified 
relative to the derivation of the state transition matrix 

(6 ) differential equations for the equinoctial elements. 

With respect to applications, a calibration of the 
first-order averaging process is needed. This calibra- 
tion should include an evaluation for operational sup- 
port applications such as network maintenance. The 
importance of the osculating to mean element trans- 
formation for  various applications should also be con- 
sidered, as well as the most efficient choice for the 
quadrature order when numerical averaging is used. 
This evaluation should also include a comparison of 
the numerical e r r o r  bounds with those attributed to 
the averaged orbit generation process in Rcferences 50 
and 51. 

Development of second o r  higher order averaging 
procedures also deserves attention. Fo r  the orbital 
predictions of strongly drag-perturbed satellites, 
there is numerical evidence that a breakdown in the 
first-order averaging assumption might introduce 
significant e r rors .  Thus, higher order averaging 
theories might extend the range of applicability of 
long-term methods of orbit prediction. It is recom- 
mended that the development of higher order averag- 
ing methods start with the basic averaging expansions 
presented in the section entitled Averaged Orbit 
Generation Methods and in  Reference 7. 

Concluding Remarks 

In this paper, a general overview has been pre- 
sented of the history and current status of the applica- 
tion of the method of averages to problems in orbit 
determination. Analytically averaged orbital element 
rates have been presented for the equinoctial elements 
f o r  the oblateness and third-body perturbations. A 
numerical averaging process in te rms  of equinoctial 
elements has also been included. 
of the averaged equations of motion, low-order multi- 
step integration formulas used in a PECE algorithm 
a re  recommendcd. The importance of careful treatment 
of discontinuous perturbations and of an osculating to 
mean element transformation was demonstrated. 
Methods for optimization of an averaged orbit generation 
process were indicated, such as a reduction in the 
quadrature order in numerical averaging and the use of 
analytical rather than numerical averaging whenever 
possible. In addition, a reas  that require further con- 
sideration to develop an optimum averaged orbit genera- 
tion process have been indicated. 

For the integration 
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The equations of motion of a satellite a re  ex- 
pressed by the gcncral formula 

where?= position vector in the inertial Cartesian co- 
ordinate system 

= r = acceleration vector in the inertial Cartesian 
coordinate system 

p =gravitational constant 

A 
P = total perturbing acceleration 

Solutions to the unperturbed prohlem 

can he written as  

(A-3) 

(-4-4) 

w h e r e z i s  a vector of orbit elements for which the deter- 
v minant 

(A-5) 

a 2  aa 
a p  a? where -and - are  6 x 3 matrices of partial derivatives. 

The variation-of-parameters (VOF) method is 
based on the concept of treating a perturbed satellite 
orbit as  a continually changing conic section o r  oscu- 
lating orhit. 
sought to Equation (A-1) of the form Equation (A-3). 
hut having orbit elements that vary with time. There- 
fore, at any time, t,?and?can hc related as follows: 

With this method, solutionsT(t) a r e  

The rate of change of the orbital element with re- 
spect to the reference motion can be separated out as  fol- 
lows: 

where%(').are the clement rates for the case P = 0 and 

@) are the element rates arising from the perturbations. 3 

v Using these definitions and Equation (A-4) 

(A-9) 

a* a? 
ars a a  where- and- a re  3 x 6 matrices of partial derivatives. 

Substituting Equations (A-6) and (A-9) into Equa- 
t i o i  (A-l) gives three equations involving six variables. 
To make the problem definite, three additional conditions 
a re  chosen. It is advantageous to make the following 
choice 

Appendix A - Theory of the Variation-of-Parameters Formnlation 
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(A-10) 

which matches the formula for the unperturbed velocity 
to that giving the actual velocity. With this restriction, 
the velocity in Equation (A-8) reduces to that for unper- 
turhed motion in Equation (A-4). Therefore, the orhit 
is specified by an instantaneous se t  of orhit elements. 
Position and velocity can then he determined from these 
osculating orbit elements using the formulas of unper- 
turbed elliptic motion. 

Substituting Equations (A-6) and (A-9) into Equa- 
tion (A-l) and imposing the condition given in Equa- 
tion (A-10) yields 

(A-11) 

Using the fact that the func t ionsTandYare  solutions to 
the unperturhed problem [Equation (A-Z)], Equa- 
tion (A-11) reduces to 

(A-12) 

This equation, with Equation (A-10). gives the system of 
equations to be solved 

(A-13) 

Using the properties of the two-body matrizant (Refer- 

ence 12). this se t  of equations can he solved for a 
yielding the VOF equations 

L@) , 

(A-14) 

(A-15) 



. ,~ 

(12) 
,.: t.: 

The orbital parameters 'at a specific time are  ob- 
tained by integrating the equations of motion numerically. 
These equations can he expressed in a different form by 
using the fact that a Conservative force i s  equal to the 

the relationship 

a F  
j aaj 

aa 6 

a? - 
L - - z ( a i , a ) -  

j= l  gradient of a potential function. Thus, 
(A-18) 

A -  

P = V R + c  (A-16) where (a,, a,) = Poisson brackets, 
1 1  

where R =perturbing potential due to conservative forces 

Q =perturbing acceleration due to nonconservative 
yields 

(A-19) aR aai - . Q 
forces 6 

i@) i = -C (ai , aj)T + 
Substituting Equation (A-16) into Equation (A-15) gives j=1 
the set  of equations 

This form for the VOP equations is useful when the 
averaged dynamics a re  under consideration. 

aai  2 aa 
i@) =J. b* an a?;+z'Q (A-17) 

Appendix B - Two-Body Mechanics With Equinoctial Elements 

Transformation from Classical Elements to Equinoctial 
Elements 

The direct equinoctial elements are. given by 

a = a  

h = e s i n ( w + n )  

k = e c o s ( w + n )  

= M  + w +  S2 

= tan (i/2) sin S2 
A0 0 
p 

q = tan (i/2) cos R 

where a, e, i, , W. and R a r e  the classical orbit ele- 

ments. The elements h and k a re  the components (in the 
orbital frame) of the eccentricity vector that points to- 
ward the perigee and has the magnitude e. Elements p 
and q a re  required in the rotation matrix between the 
inertial frame and the orbital frame. Tne element X 

i s  the mean longitude in the classical literature. The 
retrograde equinoctial elements are given by 

MO 

0 

a = a  

hr 
= e sin (w - n) 
= e c o s ( W - a )  kr 

A0r 0 
= M  + w - n  

p, = cot ( ih )  sin n 
4: = cot ( i h )  c o s n  

The quantities h and k a re  the components of the eccen- r r 
tricity vector relative to the retrograde orbital frame. 
The elements p and q a re  required in the rotation ma- r r 
trix between the inertial frame and the retrograde orbital 
frame. 

The orbital coordinate frames can be defined in terms 
of the classical orbital clemcnts: this is done in Figure 4 
for the direct case and in Figure 5 for the retrograde 

case. In Figures 4 and 5, unit vector & ,p the normal to 
the orbit plane. For the direct case the f and 2 unit vec- 
tors a r e  in the orbital plane. The direction of the f unit 
vector depends on the classical orbit elements R and i. 
The unit vector ^g completes the right-handed triad of 

A A f, i ,  and w. For the retrograde case, the ?*, $*, and w 
nuit vectors comprise the right-handed triad. Mathe- 
matically. the unit vectors can be expressed in terms of 
the equinoctial elements by 

A 

/ 1 - p 2 + q 2 \  

\ - 2 p 1  1 

Equations (B.-3). (B-4). and (B-5)  require some comment. 
If I = +1, the p and q elements defined in Equation (B-1) 
mu2t be uzed in Equations (0-3). (B-4). and (B-5). The 
?, g, and w unit vectors computed with I = +1 have the 
meaning indicated in Figure 4. If I = -1, the retrograde 
p and q defined in Equation (B-2) must be used in Equa- 
tions (B-3). (B-4), and (B-5). The ?, 2, and w unit vec- 
tors computed with I = -1 have the meaning indicated in 
Figure 5. This notation will reduce the repetition of al- 
most idcntical formulas in the remainder of the paper. 

h 
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:.. ..:v, 
Transformation from Position and Velocity to Equinoctial 
Elements 

where the auxiliary variablep is 

03-19) This paragraph gives the formulas required to com- 

The mean longitude A is given by 

A =  F - k sin F + h cos F 

pule the equinoctial elements from the position and veloc- 
Ity. The semi-major axis i s  

'4 

(B-20) -1 
A For the retrograde case, the quantities ?*, g*, hr, and 

k should replace f ,  g, h. and k in Equations (B-15) 

through (B-20). The result of Equation (B-20) is the - x ( X X X ) X ?  retrograde mean longitude defined in Equation (B-2). 

A A  03-6) 

r The eccentricity vector is given by - - A  

e =  -- - 
P @-') The derivation of Equations (B-17), (B-l8), and 

(B-20) is explained in the next paragraph. 

Transformation from Equinoctial Eiements to Position 

1x1 
The unit vector normal to the orbital plane i s  given by 

A- 
W - F X q  (B-s) and Velocity 

A Unit vector w has the exact same meaning in Equa- 
tion (B-a) as  in Equation (B-5). 
lead to 

The key to this formulation i s  the use of the Iongi- These relationships 
tudes A ,  F, and L, defined by 

A 
W A = M + w + R  

F = E + w + R  03-21) 

L = v + w + o  

03-9) 
2 

(B-10) where M, E, &d v a r e  the classical anomalies. Ele- 
mentary manipulations show that Kepier's equation can 2 

In Equations (B-9) and (B-lb), if I = +1, the and [de- 
fined in Equation (B- l ) ]  result. If I = -1, the retrograde 

be written in terms of the eccentric longitude F 

A = F + h cos F - k sin F 03-22) 
p and q [defined in Equation (B-Z)] result. The unit vec- 

h tors f and 
Equations (B-3) and (B-4). 
ments h and k a re  computed using the formulas 

Once Kepler's equation has been solved, the position and 
velocity vectors can be.expressed as ( o r b  2nd ,a*) may now be computed using 

The equinoctial orbital ele- 
v A h  

(B-23) l g  
r = x  f C Y  

1 
- A  

, A  

b = e . g  03-11) and 
k = e . f  03-12) 

. f +  < A A  
P-24) 1 1  

A h  If I was se t  equal to -1 in Equations (E-3) and (B-4). ?* 
and if. were computed and Equations (B-11) and (B-12) 
give h and k : r r 

h = e . g *  

In these equations the unit vectors f and g a re  computed 
using Equations (B-3) and (B-4). The coordinates x 
?l, and < relative to the equinoctial frame a re  given by 

X = a (1 h p )  cos F + hkp sin F - k 

1' Y1' 

1 

(B-25) 1 2 - A  
@-I3' 

r A 1 [ -  
03-14) 2 

k = c . f *  
k p )  sin F + hkp cos F - h ]  03-26) 

r 

The only remaining element to be computed i s  the mean 
longitude, A .  We f i r s t  compute the position c2ordinates 

(B-27) j ,  =& [hk cos - (1 - p )  sin 
X and Y relative to the orbital frame ?, & w by a 1 1 

1 

1 
1 (B-28) 

2 
A 

(B-15) na x = Y . f  

y =r.? ( B ~ 1 6 )  1 r [ - ? = - (1 

where the auxiliary equation 

a 
is necessary for the velocity coordinates. The coordi- 
nates can also be expressed in terms of the true longi- 

k2p) cos F - hkp sin F 

Then we compute 

f= 1 - k cos F - h sin F 03-29) 
2 

(1 - k P )  X1 - hkPYl 

a V z r  cos F = k i 03-17) 

2 tude by 
(1 - h 0) Y - hkPXl 

x = r cos L 03-30) (B-18) 1 

Y = r s in  L 03-31) 

sin F = h + 
a V T 7 7  

1 

21 



which requires the Poisson brackets from Table I9  and 
the partial derivatives of the position vector. For =/ah 
and W&, we need the partial derivatives of X and Y 

1 
which a re  

il=v+ ( h + s i n L )  (B-32) ' 

1' 
I - h  - k  

(73-33) 
i'l = v~ na - (k + cos L) 

1 - h  - k  "1 k@1 a . 
- = _ -  t - Y  Y ah n G 1 1  2 2  r = a(l  - h - k )/(1 + k cos L + h sin L) (B-34) 
ax, h &  a +-& Y - G) Equations (B-30) through (B-34) will be used in the nu- 

equal to the right-hand side of Equation (B-25). This re- ayl k s k l  a 

_ = -  
merical averaging procedure for the atmospheric drag. Zk n G 1 1  
Also, the right-hand side of Equation (0-30) can be s e t  

lation and one involving Equations (B-31) and (B-26) can be 
solvcd simultaneously to give Equations (B-17) and (B-18). 

For the retrograde case, the longitudes a re  defined 

' - = -- - - @ *  +G) 
ah n G 1 1  

a y ~  a * hsk l  - = _- x x  t- 
by ak G 1 1  n 

= M + w -  C? 

F* = E t w - C ?  (8-35) 
'L' = v t w - n  

A h  
and the quantities A*, F*, L*, f*, g*. h , and kr replace 

the direct variables in Equations (B-22) through (B-34).  

Poisson Brackets 

r 

In the present application, the Poisson brackets must 
be given in terms of the equinoctial elements. The re- 
sults a r e  obtained by direct substitution into the previous 

results by Broucke and C e f ~ l a ' ~ ~ )  and a re  listed in 
Table 19. 

Partial Derivatives of the Equinoctial Elements With 
Respect to Velocity 

- 

The partial derivatives aa/a% and aq/a!Zare 
obtained directly as functions of the equinoctial elements 

hy using the results of Broucke and C e f ~ l a . ' ~ ~ )  However, 
the expressions for ah/& ak/a??, and aAo/a?in terms of 

the classical orbit elements are not so  easily translated 
into the equinoctial elements. To compute these quan- 
tities, we have to use the relationship 

(0-36) 

(B-37) 

With these results, the position partials can be specified, 
as shown in Table 20. Substitution of the results of 
Tables 19 and 20'into Equation (B-36) gives the desired 
results, which a re  listed in Table 21. Note that the ahove 
expressions and those for ah/& &/e and ax/$?in 
Table 21 a re  greatly simplified relative to the expres- 
sions for the same quantities that were given in Refer- 
ence 35. This simplification, in turn, simplifies the 
derivation of the differential equations governing the 
partial dwivatives of the mean elemcnts with respect to 
mean elements at some fixed epoch. (See Reference 6 
for a derivation of the differential equations governing 
the partial derivatives based on the equinoctial formula- 
tion presented in Reference 35.) 

Finally, it is possible to express the matrix 

aap$in a variety of coordinate systems. The ex- 

pression for bad"+?" terms of the unit vectors 

P 

(B-38) A =x 
UT M 

Y 
h X "N = G  X W  (B-39) 

and ^w .is given in Table 22 and has particular application 
in the computation of drag perturbations via the numerical 
averaging technique. 
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,.;if; ... . . .  
. 'Appendix C - Formulation Of Shadow Equation in Terms of Equinoctial Variables 

In terms of equinoctial variables, the shadow 
B = q 9 + m  2 hk 

equation(52) for  the entry and exit values of the true 
longitude is given by C = a  -,4 + m  (k - h )  

2 2  2 2 2  v 

2 2 S = 1 - m (1 + k c o s  L + h s i n  L) 
(C-1) 

2 -(a cos L + B  sin L) = 0 

where m = 'e 
a / Z X F  

In the above equations, r is the mean equatorial radius 

to the Earth and Rs is a unit vector pointing to the Sun. 

To obtain the solution to Equation (C-1). the following 
quartic equation must be solved: 

n e  

2 2 2  D = l - B  - m  @ + h )  

The real-valued solutions to the quartic must be sorted 
to eliminate extraneous roots and to determine the entry 
and exit values of true longitude. In addition, solution of  
Equation (C-2) determines only the magnitudes of the 
true longitude that satisfy Equation (C-2). The correct 
values of the true longitude must satisfy Equation (C-1) 
as well as the condition 

A h  R . r = a c o s L + p s i n L < O  
6 

At entry into shadow, the following condition must 
hold 

as 
aL - < o  

and, at e ~ t  from shadow, 

Previously, the shadow equation has been formu- 
2 2  where A = 4 B  + C 0 lat8d in terms of equinoctial variables by Edelbaum(') 

using the eccentric longitude as the angular varizble. 
2 2 The formulation presented above is considerably A = 8Bm h + 4 C m  k 

- 
1 simpler. 

2 4 2  4 2  A 2 = - 4 B  + 4 m  h - 2 D C + 4 m  k 

A = -8Bm h - 4Dm k 
2 2 

3 

4 2  2 
A = - 4 m h  + D  

4 

23 



REFERENCES 

1, Boggs, D., "An Algorithm f o r  Integrating Lifetime 
Orbits in Multirevolution Steps" (AAS Paper 
No. 68-142, presented at the AAS/AIAA Astro- 
dynamics Specialist Conference, Jackson, 
Wyoming, September 1968) 

Velez, C. E . ,  Numerical Integration of Orbits in 
Multirevolution Steps, NASA Technical Note 
D-5915, 1970 

Graf, O.E., and D. G. Bettis, "Modified Muiti- 
revolution Integration Methods for Satellite Orbit 
Computation" (presented at the AAS/AIAA Astro- 
dynamics Specialist Conference, Vail ,  Colorado, 
July 1973) 

14. Uphoff, C., "Numerical Averaging in Orbit Pre- 
diction," AIAA Journal, vol. 11, no. 11, Novem- 
be r  1973, pp. 1512-1516 

Cook, G .  E., "Basic Theory for Prod, a Program 
for Computing the Development of Satellite Or-  
bits," Celestial Mechanics. "01. 7, no. 3, April 
1913 

Roth, E., "Fast Computation of High Eccentricity 
Orbits by the Stroboscopic Mcthad, I '  Celestial 
Mechanics, vol. 8, no. 2, September 1873 

Lorell, J., and A. Liu, Method of Averages Ex- 
pansions for Artificial Satellite Applications, Jet  
Propulsion Laboratory, Technical Report 32-1513, 

-I 

15. 

2. 

16. 
3. 

17. 

4. Mace, D., and H. Thomas, "An Extrapolation April 1971 
Formula for Stepping the Calculation of the Orbit 
of an Artificial Satellite Several Revolutions Ahead 
at a Time," The Astronomical Journal, vol. 65, 
no. 5, June 1960, pp. 300-303 

Cohen, C., and E. Hubbard, "An.Algorithm Ap- 
plicable to Numerical Integration of Orbits in  
Multirevolution Steps, I '  The Astronomical Journal, 
vol. 65, no. 8, October 1960, pp. 454-456 

18. Wagner, c. A.. The ROAD Program. Goddard 
Space Flight Center. January 1973 (copy available 
from author) 

Kozai, Y., A New Method to Compute Lunisolar 
Perturbations in Satellite Motions, Smithsonian 
Astrophysical Observatory, Special Report 349, 
February 1973 

5. 19. 

6 .  Edelbaum, T. N., L. L. Sackett, and H. L. 
Maichow, "Optimal Lorn-Thrust Geocentric Trans- 
fcr" (AIAA preprint 73-1074, presented at the AIAA 
loth Electric Propulsion Confcrcnce, Lake Tahoe, 
Nevada, October 1973) 

Nayfeh, A.,  Perturbation Methods, New York: 
John Wiley and Sons, 1973 

20. Giacaglia, G. E., Lunar Perturbations on Artifi- 
cia1 Satellites of the Earth, Smithsonian Astro- 
physical Observatory, Special Report 352, October 
1973 

Schubart, J . ,  "Long-Pertod Effects in  the Motion 
of Hilda-Type Planets, " Astronomical Journal, 
vol. 73,  no. 2, part 1, March 1968, pp. 99-103 

21. 
7. 

8. Bogoliubov, N., and Y. Mitropolski, Asymptotic 22. Williams, J. G. ,  "Resonances in the Neptune- 
Pluto System, 'I  Astronomical Journal, vol. 1 6 ,  
no. 2, March 1971. pp. 167-177 

Methods in thc Theory of Nonlinear Oscillations, 
New York: Gordon and Breach, 1961 

9. Apostal, T., Mathematical Analysis, Reading, 23. Lorell, J . ,  "Lunar Orbiter Gravity Analysis," 

Massachusetts: Addison-Wesley, 1957, p. 220 The Moon, 1970, vol. 1, no. 2 ,  pp. 190-231 

10. Broucke, R., A Note on Velocity-Related Series 
Expansions in the Two-Body Problem, Jet Pro- 
pulsion Laboratory, Pasadena, California (copy 

24. L% A. v and p. Labg ,  "Lunar Gravity Analysis 
From Long-Term Effects, "Science. "01. 173, 
September 10, 1971, pp 1017-1020 

available from author) 
25. Fer rar i ,  A. J., "Lunar Gravity Derived From 

11. Brouwer, D., and G. Ciemence, Methods of Ce- Long-Period Satellite Motion - A  Proposed 
Method," Celestial Mechanics, vol. 7, no. 1, 1973, lestial Mechanics, New York: Academic Press ,  

1961 pp. 46-76 

12. Broucke, R., "On the Matrizant of the Two-Body 
Problem," Astronomy and Astrophysics, 1970, 
vol. 6, pp. 173-182 

Kaufman, B., and R. Dasenbrock, "Semianalytic 
Theory of bug-Term Behavior of Earth and Lunar 
Orbiters," Journal of Spacccraft and Rockets, 
vol. 10, no. 6, Junc 1973, pp. 377-383 

26. Fer rar i .  A. J., and E. J. Christensen, "Mars 
Gravity Derived From the Long-Period Motion 
of Mariner 9 ,"  (Presented at AAS/AIAA Astro- 
dynamics Conference, Vail, Colorado, July 1973) 

Breedlove. W. J., Jr., Determination of the At- 
mospheric and Gravitational Parameters of hlars 
From a Study of the Long-Period ?dotion of a 
Viking Orbiter, Technical Report. School of En- 
gineering. Old Dominion University. Norfolk, Va, , 
July 1972 

13. 
27. 

.V' 

24 



28. Lorell. J., e t  al, "Gravity Ficld of Mars From 
Mariner 9 Tracking Data,"-, vol. 18, no. 2, 
February 1973 

Wagner, C. A. ,  "Zonal Gravity Harmonics From 
Long Satellite Arcs by a Semi-Numeric Method," 
JGR, vol. 78, no. 17, pp. 3211-3280, 1973 

Kanla, W., "Development of the Lunar and Solar 
Dlsturbing Functions for a Close Satellite," he 
Astronomical Journal, vol. 61, no. 5, June 1962 

29. 

- 
30. 

31. King-Hele, D. G. ,  Theory of Satellite Orbits in an 
Atmosphere, Buttcrmorths, London, 1964 

32. Olyanyuk, P. V.,  L. M. Romanov, andV. I. 
Mikhailik, "On the Peculiarities of Determining 
Various Systems of the Orbital Elements of a 
Spacecraft," Translated from Kosmicheskie 
Issledovaniva. January - February 1971, vol. 9, 
no. 1, pp. 49-53 

33. Kamel, A., and R. Tibbitts, "Some Useful Results 
on Initial Node Locations for  Near-Euuatorial Cir-  
cular Satellite Orbits, " Celestial Nechanics, 
VOl. 8, no. 1, August 1973, pp. 45-73 

34. Broucke. R . ,  and P. Cefola. "On the Euuinoctial . .  
Orbit Elements, 
no. 3,  pp. 303-310 

Celestial Mcchanics, vol. 5 ,  

35. Cefola, P. J., "Equinoctial Orbit Elements - 
Application of Artificial Satellite Orbits, I' (pre- 
sented at the AIAA/AAS Astrodynamlcs Conference, 
Palo Alto, California, September 1972) 

O'Neill, V. J., Comparison of Equinoctial Ele- 
ments and Brouwer Set 111 Elemcnts for Differen- 
tial Orbit Correction, Jet Propulsion Lab 
Technical Memorandum 391-307, March 27, 1912 

Cefola, P. J., B. A,  Lamers, G. Holloway, Jr., 
and W. D. McClain, The Long-Term Prediction 
of Artificial Satellite Orbits, Computer Sciences 
Corporation, Technical Report 9101-14300-01TR, 
March 1973 

Plummer, H. C., An Introductory Treatise on 
Dynamical Astronomy, New York: Dover Publica- 
tions, Inc., 1960 

36. 

37. 

38. 

39. Lorell, J., and A. Liu, Method of Averages Ex- 
pansions for Artificial Satellite Applications, Jet 
Propulsion Laboratory, Technical Report 32-1513, 
April 1971 

40. Rroumer, D., "Artificial Satellite Theory Without 
Drag," Astronomical Journal, 1959. vol. 64, 
Pp. '378-397 

Long, A., K. Nimitz, and P. Cefola, The Next 
Generation of Orbit Prediction Formulations for 

41. 

43. Hull, T. E., e t  al, "Comparing Numerical Meth- 
ods for Ordinary Differential Equations, !'- 
Numerical Analysis. vol. 2 ,  no. 4, 603-637, 
December 1972 

44. 

45. 

46. 

47. 

48. 

49. 

50. 

51. 

52. 

Moore, H., "Comparison of Numerical Integration 
Techniques for Orbital Applications" (presented 
at SIAM Conference on Numerical Integration of 
Ordinary Differential Equations. Austin, Texas, 
October 19, 1972) 

VeleZ, C., " Summary of Research Activities," 
(presented at Astrodynamics and Geodynamlcs 
Conference at Goddard Space Flight Center, Octo- 
be r  15, 1973) 

Walter, H. G., "Conversion of Osculating Orbital 
Elements into Mean Elements." The Astronomical 
Journal, vol. 12, no. 8, October 1967, pp. 994- 
997 

Smith, A. J., Jr., A Discussion of Halphen's 
Method for Secular Perturbations and Its Appiica- 
tion to the Determination of Long Range Effects in 
the Motions of Celestial Bodies, Part 2, National 
Aeronautics and Space Administration, TR R-194 
June 1964 

Gideon, G. S.,  Resonant Satellite Geodesy Studx 
Final Report, TRW Report No. 09128. 6001-ROO0 

Broncke, R., A Programming System fo r  Analyt- 
ical Series Expansion on the 360-91 Computer - (IBM), University of California at Los Angeles 
(copy made available by author) 

Brown, A., and W. Pon, "Same Comments on the 
E r r o r  Analysis fo r  the Method of Averaging. 
sented a t  Astrodynamics and Geodynamics Confer- 
ence at Goddard Space Flight Center, October 16, 
1913) 

Breakwell, J . ,  and J. Vagners, "On E r r o r  
Bounds and Initialization in Satellite Orbit The- 
ories." Celestial Mechanics, vol. 2. no. 2 ,  July 
1970, pp. 253-264 

Escobal, P., Methods of Ozbit Determination, 
New York: John Wley arid Sons, Inc., 1965. 
pp. 152-154 

(pre- 

Computer Sciences Cor- 
poration, 9101-14600-0lTR, March 1973 

25 



Table 1. NASA-ESRO-Mother-Daughter (NEMD) State 
Vector, Epoch-October 29, 1977 14h & O m ,  
Reference Frame-Mean of 1950.0 

OSCULATING E L E M E N T S  I MEAN E L E M E N T S  1 

OSCULATING ELEMENTS 

a = 235986.0 km 
e =  0.01 

deg i = 32.0 
deg n- 0.0 

w =  30.0 deg 
M =  0.0 deg 

a = 70849.14233 km 
e = 0.890723236 
1 = 29.0203198 deg 
n= 49.4445 deg 
W = 0.2096777488 deg 
M = 360.0 deg 

MEAN ELEMENTS 

a = 236136.8 km 
e =  0.04815321 

deg i = 32.196 
deg a =  359.756 

W E  66.114 deg 
M = 315.739 deg 

a = 70376.60299 km 
e = 0.89014687 
i = 28.970265 deg a =  49.43415 deg 
W =  0.230115389 deg 
M = 359.99789 dm 

e = 0.23761691 
i = 68.072741 deg 
a =  91.574936 deg 
w = 93.761824 deg 
M = 275.36757 deg 

Table 2. Atmosphere Explorer-C (AE-C) Circular 
Orbit State Vector, Epoch-August 21, 1974 
ldl 24m L O s .  Reference Frame-True 
of Date 

I MEAN ELEMENTS I 

e = 0.237686657 
i = 68.0653491 deg a =  91.56476444 deg 
w = 93.8385533' deg 
M = 275.31288 deg 

a = 6668.14260557 krn * = 0.0001 
i = 67.865991779 deg a -  92.4004760159 deg 
w = 310.292209633 deg 
M = 55.2316996621 deg 

LOW.ORDE.9 ZONAL GRAVITY 
HARMONICS.THlRD BODY 

ZONAL GRAVITY HARMONICS: 
THIRD BODY 

JfTHIRO BOOY 

ZONALS: TESSERALS. THIRD. 
BODY 

Table 3. Atmosphere Explorer-C (AE-C) Elliptic Orbit 
St te Vector, Epoch-February 26, 1974 
10 24m 0. Os, Reference Frame-True 
of Date 

w 

ATMOSPHERIC DRAG: TESSERALS 

OBLATENESS: 0RAG:THIRD- 
BOOY EFFECTS 

O S C U L A T I N G  ELEMENTS I MEAN ELEMENTS I 

2ONALS.THlqD BODY 

a = 8525.7231 km I a = 8520.88766 km I 

ATMOSPHERIC DRAG 

PROGRAM 

KAUFMAN 

UPHOFF 

COOK 

ROTH 

LORELL 

WAGNER 

:FERENCI 

Table 4. ESSA-8 State Vector, Epoch-May 29.0, 1970, 
Reference Frame-True of Date 

O S C U L A T I N G  ELEMENTS V E A h  E L E U E h T S  1 
I a = 7822.834 km I a = 7815.381 km I 

e = 0.00309 e = 0.00284 
i = 101.802 I a =  207.841 

i = 101.811 deg 1 
deo 

w = 352742 d 6  0 = 348250 d e i  I 1 M = 18813 deg I M = 23286 deg 

Tab!+ 5. Test Case: Interplanetary Monitoring Platform 
(IMP) Transfer Orbit State Vector, Epoch- 
November 1.0, 1973, Reference Frame-Mean 
of 1950.0 

I OSCULATING ELEMENTS I MEAN E L E M E N T S  

a = 138572.57 
* =  0.95 
i - 33.83 a =  221.55 
o = 135.73 
M =  0.02 

a = 138592.254 
8 -  0.950094 
i - 34.30168 
n= 220.6324 
w = 136.46 
M =  0.02023 

Table 7. General Purpose Averaging Programs in Classical Elements 

13 

14 

15 

16 

17 

18 - 

PERTURBATIOhS TREATED PCRTLRBATIONS TREATED 
VIA ANALYTICAII VIA *rVMERIC.\- 

AVERACIhG AVERAG hG 
COMMENTS 

THIRD-BODY POTENTIAL EXPANDED TO 
laIRgl8: NONROTATING ATMOSPHERE 

INCLUDES MODIFICATION FOR CIRCULAR 
ORBITS 

ALSO INCLUDES TREATMENT OF ATMOS- 
PHERICDRAG TAKEN FROM KING.HELE1311 

TREATMEhT OF TESCERaLS ASS.'hrES 
TnATCEhTRAL HOOI ROTAT \ti AhG.E 
I S F I X E D F O R O Y C O R B  T O F  sA:r i . iTt  

AI *ALV l  CAL R E S * L l S F R O M  K A b L A  301 
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Table 8. Auxiliary Parameters for the Third-Body Potential 

3 B = - V  + l  
3 A = - S  - 1  

1 2 2  1 2 2  

2 1 4  2 4  

v 
A = - a s  B = k V  

5 
B = h V  

3 A3 = p1S5 

5 3 
4 4 2  4 4 2  

A = - S  - 1  B =-V - 1  

2 
5 2 2 

2 2  
6 3  1 

A = 105s - 120s + 24 

A = S  - 4 5  

A = S S  
I 1 3  

A = I S  - 6  8 2  

A9 = ffl (Si - S6) 

2 8  4 
A11=.1( s 3 - - s  9 4 - 4 8  1) 

-;i 

A12 = 8, (5 - :S5 - 4n 
2 4  8 = s  - - s  + -  

A13 2 3 2 2 1  

15 2 B = - V  + 5 V  + 1  5 a 2  2 

2 2 
1 

B = V  - 4 V  
6 3  

B = V V  I 1 3  

B = V  + 2  
8 2  

Bg = k (V3 2 - V6) 

B = k V  ( 3 V 2 +  8) 
11 4 

BIZ = hV (3V2 + 8) 5 

5 2 5  =-v + - v  t l  
B13 8 2 2 2 

3 BI4 = 35V 3 + 21OV 2 + 168V2 + 16 

= v ( v z  - 12.2) 

B16 = V1 (3V3 2 - 4V1) 2 

A14 2 2 2 
= 231S2 - 318S2+ 168S2 - 16 

B15 3 3 

A16 = S1 (3S3 2 - 4s ; )  

- A  (S - - )  10 

A1'7 = A  6 (S 2 -?) 11 BIT = B6 (VZ + 

B18=B (V + -  I 2 3  

) 

A18 7 2 11 
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TIWE 

1 0 A W  
1.m1i3 I.iR3i' 1 . q 5  F R O M  EPOCH (.!R,)~ 

0 0.0 0.0 0.0 0 0  

Irn 12.1 J7.2 1% 1.4 

xa P.3 15.7 12,s 0.4 

am 13.6 IW.7 27.1 13.8 

I.iR3P 1.1R313 1.1R31' I.IR316 
TlMF 

FROMEPOCH 
I0A"SI - 

0 0 0  0 0  0.0 0.0 

,W .A9 .A3 . , I  . I4 

10 .e4 .59 . I .  .AI 

Jm .a -70 .13 .m 

INTEGRATION 
ALGORITHM 

PECE 
PECE 
PECE 

PECE 
PECE 
PECE 

PECE' 
PECE. 
PECE. 

PECE 

METHOD INTEGRATION 
ALGORITHM 

SINGLE OUAORATURE 

INTEGRATION OUAORATURE STEPSIZE TOTAL " r ~  nh 
ORDER ORDER IHRl  FORCE IKMI IOEGl 

EVALUATIONS 

11 24 2 180W REFERENCE 
.OM3 ,002 

9w0 .OM ,013 
11 12 2 
11 12 48 1570 

11 12 96 1880 ,023 .M 
9 12 48 1330 ,0007 .ow 
9 12 96 1525 .ow ,013 
7 12 96 1000 -001 ,013 

7 12 2 UNSTABLE 
5 12 4 2500 I ,0003 ,001 
5 12 8 UNSTABLE 

REFERENCE 

3.16 

73.0 

3.3 

r INTEGRATION INTEGRATION OUAORATURE STEPSIZE TOTAL FORCE la81 Wrpl METHOD 
lHRl EVALUATIONS Ikml Ikml 

SINGLE OUAORATURE PECE 9 24 8 65M) 14.3 ,056 
SINGLE OUAORATURE PECE 9 24 12 UNSTABLE 
SINGLE OUADRATURE PECE 7 24 12 UNSTABLE 

TWO OJACRATURES PECE 9 24 2 17700 REFERENCE 

ALGORITHM ORDER ORDER 

SINGLE OUADRATURE PECE 9 24 2 18000 3.4 ,011 

TWOOUADRATURES PECE 9 24 8 5680 ,002 ,0001 
TWOOUAORATURES PECE 9 24 12 4200 ,012 ,3002 
TWO OUAORATURES PECE 7 24 12 3800 ,012 .oow 

,052 ,0044 TWOOUAORATURES PECE 7 24 24 2780 
TWOOUAORATURES PECE 5 24 24 2250 ,052 ,0248 
TWOOUAORATURES PECE 9 24 48 3200 ,068 ,006 
TWO OUAORATURES PECE 7 24 48 2400 ,083 ,008 
TWOOUAORATURES PECE 5 24 48 1800 ,083 ,009 

Table 14. Comparison of 40 Day Predictions of the AE-C Ci rcu la r  Orbit 

Perturbation nlodel: Analytical Averagmg-J2, J3. Sun, Moon 
Numerical Averaging-Atmospheric Drag (US '62 blodel) 
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1 
1 
1 
1 
1 

1 
1 
1 
1 
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Table 15; Accuracy Statistics for 3-Year Predictions of the I M P  Mission Orbit 

Perturbation Model: Numerical Averaging-Lunar Point Mass 

83 
57 
43 
33 

42 
27 
22 
18 

- - 
- 

0.02 

0.01 0.30 
0.04 1.24 

0.26 
0.08 1.99 
- 

1.07 
4.18 
0.97 
6.5 

- 
0.2 

0.4 
- 

PECE 
PECE 
PECE 
PECE 
PECE 

9 12 2 5220 REFERENCE 
11 12 24 UNSTABLE 
9 12 24 1020 
7 12 48 UNSTABLE 
5 12 48 475 ,0003 

7200 
7200 

7200 
7200 

4 

4 

AVERAGED PREDICTION 
A V E R A G E D D C  

4 x 0  
4 x 0  

___ 
DUAD- 

RATURE 
ORDER 

I 
ha I 

(103 KMI El2 IDEGI (lo3 KMI 
STEPSIZE 

IDAYSI ISECI 

24 
24 16 

12 
9 

24 
16 
12 
9 - 

0.001 
0.006 
0.001 
0.006 

0.125 
0.143 
0.081 
0.005 

0.0002 
0.0009 
0.0001 
0.0015 

0.0096 
0.0098 
0,0088 
0.0092 

.5 
1 
1 
1 
1 

2 
2 
2 
2 

0.05 I 0.52 I 15.2 ~~ 

0.05 0.54 15.8 
005 1 0.45 1 13.8 
0.01 0.43 10.7 

Table 16. Accuracy Statistics for  3-Year Predictions of the IMP Mission Orbit 

Perturbation Xlodel: Numerical Avemging-Lunar Point Mass 
QUAD- AVERAGING 

STEPSIZE RATURE I N T E R V A L  360191 bi I lbnl Wl IPMI brpl 
IDAYSI ORDER ISEC) (lo3 KMI (DEGI (DEGI (DEGI IDEGI (103KMI 

.5 24 2 REFERENCE 
0.001 0.0001 - 0.01 0.15 0.5 1 24 2 82 

1 12 2 42 0.014 0.0003 - 0.02 0.48 
1 9 2 32 0.25 0.0035 0.02 0.59 15.6 49.0 

2 24 

2 12 2 22 0.233 0.0035 0.04 0.21 8.0 
2 

1.5 0.1 
0.8 

2 41 0.53 0.001 0.01 0.04 0.95 2.9 0.1 
2.4 5.1 0.4 

26.5 0.6 
29 0.319 0.003 0.02 0.07 16 2 

Table 17. Accuracy and Cost Statistics for 14 Day Predictions of the ESSA-8 Orbit 

I. Perturbation Model: Numerical Averaglng-4 x 4 Gravity nlcdel, Solar and Lunar Point Masses 

I N T E G R A r # O \  i h T t G R A T l O N  
ALGDRITAU ORDER 

QUADRATURE 
ORDER 

STEP. 
SIZE 
(HRI  

TOTAL 
NUMBER OF 

FORCE 
EVALUATIONS 

DEGREES1 

12 24 
12 24 
12 48 ---I- 12 48 

12100 
9000 
4500 
1620 
1250 

REFERENCE I PECE ll 
PECE 9 
PECE 9 
PECE 9 
PECE 9 
PECE 7 
PECE 9 
PECE 5 

,007 .002 
,007 002 
.06 2.0 
.06 5.0 
.11 4.75 950 

775 
UNSTABLE 

I .13 1 5.9 

2436 
1296 

PECE' 
PECE' 

II. Perturbation Nodel: Numerical Averaging- 4 x 0 Gravity Model, Solar and Lunar Point Masses 

'ison of ESSA-8 State Vectors at 14 Days From Epoch Table 18. Comi 

1 G R A V I T Y  
METHOD MODEL RMS 

Y 
(KMI 

X 
(KMI 

-395.2772 
496.2007 

.395.1799 
-395.1442 

-394.8476 
496.6927 

.394.7206 
-396.6929 

-2431.583 
.2432.6012 

2430.8783 
-2430.4700 

-2430.6275 
2431.7530 

-7402.4749 
.7402.0741 I R E d i E N C  

H I G H  PREClSiON PREDICTION 4 x 4  
H I G H  PRECISION DC ,475 

2.76 

2.02 

2.02 

29 

AVERAGED PREDICTION 
AVERAGED DC I 4 x 4  

4 x 4  
,7400.3624 
-7400.0408 

AVERAGED PREDICTION 
AVERAGED DC 

-7400.2605 
.7399.7796 

43200 
43200 I 4 

-7400.3014 
.7399.7797 

.2430.5253 
2431.7053 



Table 19. Poisson Brackets of Equinoctial Elements*, ** Table 21. Partial Derivatives of the Equinoctial Ele- 
ments With Respect to Velocity 

*Auxiliary variables: 

2 

2 2  

s = 1/oa 1 

s2 = l + p  c q  

8 = s s /(1+S3) 

s5 = SI s2/ ( 2 9  

s 3 = i T x F  
4 1 3  

** 
Note: If I = il, the elements have the meaning of 
Equation (E-1). If I = -1, the elements have the moaning 
of Equation (B-2). 

Table 20. Partial Derivatives of Position 

A . - = - ( X  _ -  ;; t) 3, 1 4  
a a  a 2 

A 
- -  - x /n a;: 
a a 

A h  q ( Y , f - X 1 g ) I - X  1 

Table 22. Partial  Derivatives of Equinoctial Elements With 
Respect to Velocity in Tangential Coordinates 

aa  zJ?J 
a x  n a  T -Ii= 

Br 
a 

2 - -  
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t. 
PERTURBATION MODEL NUMERICAL AVERAGING - J7 J3. SOLAR AND LUNAR POINT MASSES 

ATMOSPHERIC DRAG IHARRIS PRIESTER MODEL1 
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Figure 1. Semimajor Axis Predictions for the AE-C Elliptic Orbit 
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Figure 2. Comparison of Inclination Histories for the IMP-3 Transfer Orbit 

Perturbation hIodel: Numerical Averaging-Lunar Point hlass 
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Figure 3. Comparison of Semimajor Predictions for the AE-C Elliptic Orbit 
Using Various Quadrature Orders 

* lgure 5. ltetmgraue LquinOCtl31 Coordinate Frame 
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