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THE LONG-TERM PREDICTION OF ARTIFICIAL SATELLITE ORBITS*

P. J. Cefola,** A, C, Long, and G. Holloway, Jr,
Computer Sciences Corporation
Silver Spring, Maryland

Abstract

This paper presents a survey of averaging and
multirevolution methods. It emphasizes experience with
both analytical and numerical averaging, A technical
approach with the following features is recommended:
(1) averaged variation-of-parameter equations, (2) ana-

Iytical expressions for oblateness and third-body effects,’

{3) definite integrals for atmospheric drag and lunar
effects (for long period orbits), (4) nonsingular equi-
noctial element formulation, (5) multistep numerical
integration processes, and (6) precise osculating-to-
mean element transformation. Several orbital predic-
tions illustrate the contribution of this technical approach
to overall accuracy and efficiency., Future development
of the analytical averaging method in nonsingular coordi~
nates by automated manipulation of literal series is dis-
cussed,

Introduction

Consider the following applications of orbit predic~
tion methods:

1. Computation of orbital element time histories
to support analysis of satellite scientific ob-
jectives and engineering constraints (for ex-
ample, Iaunch window studies)

2.  Statistical determination of the mean ele-
ments of a satellite orbit at some epoch with
an accuracy sufficient to allow meaningful
long-term predictions

3. Determination of a gravitational model from
very large amounts of satellite or planetary
orbiter tracking data

Long-term orbit prediction models are most efficient for
these applications where knowledge of the short-period
perturbations is not required or where the cost of inte~
grating numerically the precision equations of motion is
prohibitively high. Averaging and multirevolution
methods for long-term orbit prediction are the subject
of this paper. Emphasis is placed on the former.

Averaging methods can be handled either analyti-
cally or numerically, The anzlytical method usually
requires a "first order" average of the perturbing
potential, The first order qualification indicates that

during the averaging process the slowly varying ele~
ments are held constant and that the fast variable' (us-
ually the mean anomaly or the mean longitude) varies
according to Kepler's laws. The averaged potential is,
then, differentiated to obtain the expressions required
in the variation-cf-parameter (VOP) equations of motion,
The resulting closed-form expressions can be used to
construct an extremely efficient orbit prediction pro~
gram, However, the accuracy of the averaged element
rates depends on the validity of the various assumptions
that are made in deriving the analytical results, A
typical set of assumptions is that made in the computa-
tion of the averaged third-body potential, The potential
is expanded in a power series with the ratio of the dis-
tance from central body to satellite to the distance from
central body to disturbing body treated as a small param-~
eter. The series is truncated by assuming that higher
order terms are negligible, The remaining terms in the
expression for the potential are then averaged. To sim-
plify the averaging process, the assumption is made that
the disturbing body does not move over one revolution of
the satellite. However, such assumptions can limit the
applicability of the model for particular orbits.

On the other hand, numerical averaging techniques
have the abilify to simulate the effect of any small per-
turbation that can be modeled deterministically. These
effects are included by averaging the time derivatives
of the orbital elements (including the effects of perturba-
tions) over one or more revolutions of the satellite using
a numerical quadrature technigque, No mathematical
modification to the perturbing acceleration model is re-
quired for numerical averaging. However, the right-
hand sides of the numerically averaged equations of
motion contain definite integrals that are relatively
costly in terms of computational requirements, The
cost of each derivative evaluation usually is outweighed
by the large stepsizes that are possible in the integration
of the averaged dynamics,

Multirevolution methods (particularly as developed
in References 1, 2, 3, 4, and 5) also attempt to calcu-
late accurately the long-term evolution of the orbit of
an artificial satellite about its central body, The funda-
mental key to this approach is to approximate the deriva-
tives of the mean elements with respect to time by use
of a precision integration process. To clarify the

* Work supported under Contract NAS 5~11999 with NASA Goddard Space Flight Center, Greenbelt, Maryland.
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T A fast variable has a nonzero time derivative when the perturbing acceleration is set equal to zero.



issue, compare the VOP precision equation of mo-
. tion,*
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In the above equations, the following notation is used,
ay= precision orbital element
éta = derivative of 3 , With respect to time
'Ea = mean orbital element

t = time of the derivative evaluation

T = period of the orbit

=]
I

mean period of the orbit
Q‘ = perturbing acceleration
X = velocity vector

Clearly, the multirevolution equation of motion
(Equation (2}] is an integral form of Equation (1), the
high precision equation of motion. In Eguation {2), the
slowly varying elements, as well as the fast variable,
are functions of time. The osculating period represents
the time from one reference point to the next, The ref-

{4)

erence point is usually the nodal crossing’ * or the

perifocal passage.(l) The numerically averaged equa=~
tion of motion { Equation (3)], is a definite integral in
which the slowly varying elements arec held constant and
the fast variable is varied according to Kepler's laws,
The T in Equation (3) is obtained from the mean semi~
major axis, a, using the relationship
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. . @

where 1 i8 the mean Kepler mean motion,

T=
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1

Because the difference a, - 'éa is on the order of

a small parameter of the problem (for example, J 2), the

'right-hand sides of Equations (2) and (3) are closely re-
lated, However, from a computational point of view,
there is a significant difference in the cost of evaluating
these two expressions, Equation (2) is evaluated using a
precision integration process; therefore, a starting pro-
cedure must be performed for each evaluation of the
long-term rates (assuming that a multistep integration
process is used). Alse, approximately 100 perturbing
acceleration evaluations are typically required in the
precision integration of the orbit over one period, T. By
comparigon, the quadrature process that is used to com-
pute the right-hand side of Equation (3) usually requires
no more than 12 (or occasionally 24) perturbing accel-
eration evaluations over each averaging interval T. To
achieve an efficiency with multirevolution methods that
is comparable with that of the averaged orbit generation
process, emphasis i3 placed on developing medified in-
tegration formulas to solve the finite difference repre-
gsentation of the equations of motion. These methods
require an evaluation of Equation (2) only once every
geveral orbits. The relation of the multirevolution
method to Adams’' integration is developed in Refer-
ence 5.

For long-term predictions where mean element
accuracy is required, two limitations of multirevolu-
tion methods seem apparent. First, the method is not
open to the incorporation of analytical formulas in the
same way that analytical averaging can be used in con-
junction with numerical averaging. Second, the propa-
gation of the partial derivatives (the state transition
matrix} is an open guestion with regard to multirevolu-
tion methods. In contrast, much more work has been
done in the propagation of the partial derivatives of the
averaged orbital elements (see Reference 6).

The next section of the paper presents a detailed
review of the mathematical bases of the various averag-
ing methods, A survey of current averaging computer
programs is presented. The following sections con-
gider the formulation of the averaged orbit generation
process in nonsingular variables, appropriate numeri-
cal integration procedures for the averaged equations
of motion, the importance of an osculating-to-mean
element trangformation, and optimization of the aver-

" aged orbit generation process, Numerical examples

are presented throughout that illustrate the experience
of the authors in these areas. Initial state vectors for
the test cases are listed in Tables 1 through 6. Finally,
areas are reviewed that are open to further research.

Averaged Orbit Generation Methods

This section describes the formulation of analytical
and numerical averaging methods of orhit computation,
Emphasis is placed on specifying the analytical expres-
gions required for an averaging method in a specific set

* For simplicity, equations of motion are presented only for the slowly varying orbital elements, However an
analogous relationship exists for the equations of motion of the fast variables.



of coordinates. The relationship of the averaged equa-
tions of motion to the precision equations of motion is
noted, Recent contributions to the method of averages
are cited. .

Mathematical Preliminaries

Averaging methods are based on the precision
VOP equations (see Appendix A for derivation). The
fundamental features of the equations of motions are in-
dicated in the formulas for the classical orbital ele-
ments

da _ .
e_:‘?_cfl(a’ e, i, w, , M

de _ ,
at —efz(a, e, .1, w, , M)

di _ .
dt—ef3(a, e, i, w, O M)

(5}
dw

E{sz‘i(a, e, il Ly &, M)

dn

‘_C]T=ff5(a, €, i; (43 Q) M)

dM _ s .
E-E—Hn+ef6(a, e, i, w, &, M)

Note that ¢ is a small parameter related to the magni-
tude of the perturbing acceleration veetor (such as the
Jz harmonic coefficient), Therefore, a, e, i, w, and

i are slowly varying elements and M is a fast variable,
according to the previous definition.

This formulation is identical to Nayfeh's General-
ized Method of Averaging (Reference 7, p. 168) with one
exception, In Equation (5), the natural rate of the fast
variable is a function of the slow variable a; whereas
Nayfeh assumes that the natural rate of the fast variable
ig a consgtant,

8)

Following Bogoliubov and Mitropolski, ™ a near
identity transformation is assumed:
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To determine expressions for the functions F 1

through F 6 in terms of the known functions £ 1 through f6’
Equations (8) are differentiated with respect to time,
Equations (7} are substituted into these expressions and
the resulting equations are substituted for the left-hand
gides of Equations (5). In addition, Equations (6} are
substituted into the right-hand sides of Equations (5).
Expanding and equating coefficients of ¢, equations of
the form ‘

5 5. 1, 5. 08) +n ee W) = eee, W
Fl(a: es L, W \Q) +nalVI al(ar H M) fl(al ] M)

(8)

are obtained for the slow variables, The quantity f 1 is
agsumed to he the sum of fi {short-period term) and fﬁ
(long-period term that docs not contain the phase angle
M). Substitution of the definitions for fi and £ into

1
Equation (8) results in

F,o+a-2a = +¢4
SRR 7 T B B ®
Integration over the period (noting that a 1 is periodic in

the phase angle) yields the following result:

2n
-1 SR
F =3 A £, df (10)

For convenience, Fl can also be written as

e
F1=§-1-T-‘/0 t dM (11}
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For the phase angle M, the following equation is
obtained:

&M

F6+n 3 =f6+n1 (12)

‘ R 3 . . .
where the constraint n2 a =y implies the expansion

n=ii+en1(5., g i,ma M+... (13)

After integration over the period of the system, the fol-
lowing edquation is obtained:

y [
=— i 4
Fe 2"/0' fdM (14}

Substitution of Equation (11) for Fl, the analogoug

results for the remaining slow variables, and Equa-
tion (14) for FG into Equations (7) give the firgt-order

averaged equations of motion:
- 2n
da 1 f - - T
- = ef @, e ¢, M)dM
dt  Z2r 0 1

2n
& 1 . - -
E'é?r"f €L,@, +or, M) dfl
0

- 2
a1 o
at -5'1}'-/0' Ef3(5, » M)dM

(15)

Equations (15) are the basis of the first-order
averaging methods that have been widely applied to or-
bital prediction problems. This method can be extended

{7)

to higher order effects. Nayfeh'  presents an exten-

sive reference list in this area,

Analytical Averaging Methods

For the conservative forces, the perturbed portion
of the right-hand sides of Equations (5) can be expressed
as a sum of products of the Poisson brackets and the
partial derivatives of the perturbing potential (see Ap-
pendix A for derivation):

6 :
_ oR
€f =~ 1_5_=1 Ch aj)————aaj (16)

where a. is now the ith orbital element, Because the
Poisson brackets depend only on the slow variables (for
the classical orbital elements to be discussed in this
section and for the nonsingular variables to be consid-
ered in the next section), substitution of Equation (16)
into Equations (15) resuits in

! 6 : 2r
i {1 3R .,
- _..§1=1 Ch aj) o /0- 35 ¢1 (17)

However, under the assumptions that R and BR/BEJ are

continuous, the partial derivative and the integral sign

in Equation (17) can be interchanged.(g)

expression is

The resulting

Thus, only the perturbing potential must be averaged,
not each equation of motion as implied by Equations (15).
This simplification explains the connection between con-
servative perturbations and analytical averaging exhib-
ited in current applications,

An alternative to Equation (16) is the Gausgian
form of the VOP equations (see Appendix A for deriva-
tion):

[u-,

|

da
€f =

=3% 9 (19)

]

Substitution of Equation (19) into Equations {15) gives

dai 1 2 a.a-'i Q- —
—_— == —~z= * QdM (20)
dt 2T 0 ax

This form‘for the averaged equations of motion has the
advantage of being valid for nonconservative, as well as
for congervative, forces.
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A firgt ingpection of Equation (20) does not indicate
the problems encountered in obtaining closed form ex-
pressions for the right-hand sides. Unfortunately, the
two-body partial derivatives are functions of the phase
angle M and must be included in the evaluation of the in-
tegral. Also, for some perturbations (such as atmos-
pheric drag), the products (aéi/ a¥) . Q are not avail-

able as functions of the slowly varying elements.(m]
For these perturbations, the perturbing acceleration ig
a function of the Cartesian coordinates and velocities.
Thug, the two-hody mechanics are required for the
transformation from the slowly varying elements. .

Numerical Averaging Methods

Equation (20} ig the basis of numerical averaging
methods in which the integral in the right-hand side is
computed by numerical quadrature methods at each point
where the derivative dﬁi/dt is reguired. This method

has the advantage that the long-term effect of any per-
turbing acceleration that can be deterministically mod-
eled can be computed.

From the point of view of a-system designer who
wishes to modify an existing orbit generation program -
to do averaged orbit generation, application of Equa-
tion (20) in a numerical averaging procedure is par-
ticularly attractive, It appears that only a quadrature
routine is required to interface with usually existing
routines for computing [aai/ 3%1 - Q. However, for

orbits strongly perturbed by atmospheric drag or golar
radiation pressure, it is advantageous to consider the
near discontinuities in the perturbing acceleration with-
in the context of the quadrature process., (See Optimi-
zation of Averaging Methods, below, for more discus-

sion on thig point.)

‘ Another circumstance deserves some comment,
In Equations (5) the functions fi were assumed to have no

significant dependence on time, 7This assumption ig
violated if the longitude-dependent terms in the geopoten-
tial are included and the satellite orbital period is of the
same magnitude as the central body's rotational period.
The assumption is also violated in the case of the third-
body perturbation when the disturhing body's peried is

of the same magnitude as the satellite orbital period.
Mathematically, the perturbing aceeleration @ now de~-
pends on two phase angles:

Q=T e i, w, N M, M) (21)

If M' can be expressed as a function of M, then the
previously discussed theory will apply. As a gimple
example, assume that the two phase angles are gov-
erned by the unperturbed solutions

M_+nt
On

=2
"

22)

M' = M(’) +n't (23)

which gives

n' n'
I = M- | L
M o M+M0 n MO {24)

Substitution of Equation (24) into Equation (21) converts
Q into a function of only the slowly varying elements and
M. This approach hag been taken in the applications with

" success. Some improveient in the dynamical properties

of the averaged equations of motion is noted if the aver~
aging interval corresponds to an integer multiple of the
periods associated with both M and M',

Re&uirements for Two-Body Results

Consideration of Equations (18) and {20) shows that
the following two-body results are required:

1.- A transformstion from position and velocity
to the slowly varying elements and phase angle

2. A transformation from the slowly varying elo-
ments and phase angle to position and velocity

3. Poisson brackets for the slowly varying ele-
ments and phase angle

4. Partial derivatives of the slowly varying ele-
ments and phase angle with respect to velocity

Transformations 1 and 2 are well known for the classical

orbital elements, The Poigson brackets for the classical

elements are given in References 11 and 12. The partial

derivatives of elements with respect to velocity are avail-
able in the orbital coordinates, radial coordinates, and

tangential coordinates.(lz’ 18)

Additional two-~bady results are required for the
coefficients of the differential equations that govern the
partial derivatives of the mean elements with respect to
mean elements at some different epoch,

Application Programg in Classical Elements

- Beveral averaged orbit generation programs based
on the classical orbital element formulation have heen
reported in the literature. Their significant features are
described in Table 7. A pattern of treating the zonals
and third-body effects via the analytical averaging pro-
cedure can bhe observed, Thus, emphasis is placed on
the derivation of the averaged potential., Kaufman's
derivation of the third-body potential by use of machine-

automated algebra is particularly interesting.(lg)
Kaufman also tries to take into account the third-body
motion during the averaging period via a low-order
Taylor series expansion in mean anomaly. The subject
of third-body perturbations has also been addressed re-

cently by Kozai(lg) and Giacaglia.(zo) Certain numeri-

cal questions seem to remain open. For example, what
is the physical effect of truncating the third-body poten~
tial at some low order? What is the effect of the motion
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of the third body during the ‘avcraging interval on the
solution?

Cook's paper(ls) is interesting because it makes
clear the connection between the formulation of the an-
alytically averaged equations of motion and the inclina-
tion function, ¥ f,mp(i) and the Hansen coefficients,

which are polynomials in the eccentricity. Later in this
paper, when averaging methods expressed in nonsin-
gular variables are considered, it will be reasonable

to inquire about the analogous functiong in nongingular
variables.

In addition to the work noted above, there have
been investigations of long~term orbit prediction prob~
lems with resonance conditions that make use of nu-

21, 2
merical averaging techniques.( » 22) Finally, several
investigators have applied averaged orbit generation

o . . S 23-2
processes in differential correction a.pphcs.tmns.( 8-29)

Averaged Orbit Generation in Equinoctial Elements

The variation-of-parameters (unaveraged) equa-
tions for the classical orbital elements are singular for
small eccentricities and small and near-180-degree in-
elinations. 7The practical effect of these singularities is
to cause rapid oscillations in some of the orbital ele~
ments when the orbit is in a near-singular condition.
These oscillations are detrimental both in orbit predic-
tion processes and in statistical orbit determination
processes that require orbital predictions, A theoret-
ical basis for the effects of singularities on differential
correction processes is developed in Reference 32.

After the equations of motion are averaged, these
singularities remain; however, the frequency of the
rapid oscillations in the elements depends on the orbit
type and the perturbing acceleration model. The degree
of difficulty arising from these oscillations also depends
on the particular application, For example, with a 24-
hour geosynchronous communication satellite, a very
rapid motion in the longitude of the ascending node oc-

{33)

curs once every 54 years, concurrent with the time

_of minimum orbital inclination, This motion is signifi-

cant because the low inclination portion of the long-term
history is usually chosen as the active satellite lifetime
to take advantage of "passive" stationkeeping properties,

* With the Radic Astronomy Explorer-B satellite in
a pnear-circular lunar orbit, many rapid oscillations cc-
cur in the argument of perigee over the l-year lifetime
due to the low orbital eccentricity. To predict this orbit
with accuracy {using the classical element formulation),
a variable-stepsize integration process is required. Al-
ternatively, a fixed-step integration process can be used
with a very small stepsize. Both of these procedures
are unnecessarily inefficient.

For the determination of mean elements, it might
be possible to aveid the rapid oscillations by restricting
the observation data span. In this case, the method of
averages with classical elements could be used. How-
ever, long-term predictions made with the same pre-

diction process using these elements would face the
problem described previously. [n addition for applica-

tions such as gravitational model development, 29)
emphasis is on using long arcs of data, and it is not
convenient to restrict the data span.

These singularities can be eliminated from the
VOP equations by a reasonable transformation to another
gset of elements. Several possible modifications to the
element set are given in Reference 32, In general, each
of these modified sets addresses a specific singularity:
thus, there is a low eccentricity set, a low inclination
set, and a combined low eccentricity/low inclination set.
Some of the modified sets cause difficulties with the 90-
degree inclination.

The equinoctial elements ®*) have the advantage
that the partial derivatives of position and velocity with
respect {o the elements, the Lagrange brackets, the
Poisson brackets, and the partial derivatives of the
elements with respect to position and velocity are all
free from sinpularities for zero eccentricities and 0-
and 90~degree inclinations. Reference 35 introduced
the retrograde equinoctial elements, which are free from
singularities for zero eccentricities and 90- and 180-
degree inclinations. All equations in the direct and ret-
rograde equinoctial elements have the same form except
for interchanges of plus and minus signs. Thig gimilar-
ity greatly simplifies the development of an averaging
method that is applicable to all closed satellite orbits,
Finally, Reference 36 provides a brief comparison of
equinoctial elements and a low inclination set for differ-
ential orbit corrections.

. The authors have implemented averaged VOP orbit
generation procedures in two programs--the Earth Satel-
lite Mission Analysis Program (ESMAP) and the Goddard
Trajectory Determination System {GTDS). ESMAP is an
orbit generation program that was built for the mission
analysis group at Goddard Space Flight Center (GSFC).
In this program, the averaging process iz based on the
following form of the VOP equations of motion:

daoz ZG: 3R aaa =
—_—= a,a)—— +—= @ (25)
dt = B aaﬁ ¥

where R = perturbing potential due to the conservative
forces

Q = perturhing acceleration for the nonconserva-
tive forces

For this application, the pertfurbing potential R includes
the third-body and oblateness effects, and the perturbing
acceleration @ includes the drag effects and, optionally,
the lunar effect., A hybrid averaging procedure has been
implemented, The averaged element rates arising from
the conservative forces are computed analytically accord-
ing to Equation (18), The averaged element rates arising
from the nonconscrvative forces are computed numerically
according to Equation (20).



GTDS is an operational orbit determination system
-also supported by GSFC. In this program, a totally nu~
merical averaging procedure is implemented, The aver-
aging equations of motion are in the form given in Equa-
tion (20), where all the perturbing forces are included
in the evaluation of the perturbing acceleration, Consid-
eration of Equations (18) and (20) shows that the follewing
_two-body formulas are required:

1. A transformation from classical elements to
equinoctial elements

2. A transformation from position and velocity
to equinoctial elements

3. A transformation from the equinoctial ele-
ments to position and velocity

4, Poisson brackets for the equinoctial elements

5, Partial derivatives of the equinoctial ele-
ments with respect to velocity

These are developed in Appendix B.
In the following paragraphs, the perturbing poten-
tials for third-body effects and oblateness will be devel-

oped in equinoctigl elements,

Third-Body Potentiall

This paragraph presents the eguations for the
gingle-averaged perturbing potential arising from a third
body in terms of the equinoctial orbit elements. The par-
tial derivatives of the potential with respect to the equi~
noctial elements have been generated and the resulting
variation-of-parameters (VOP) equations are presented,

The potential employed to model the influence of the
Moon and Sun on an Earth satellite is expressed by

o
D

{26)
n=2
where
u n
3_"3¢4r ’
Forw (_R;-) Phleas¥) (27

In the above expressions

Mg = gravitational constant of the third body

If the final equations are to be accurate to the sixth
order in the ratio of the satellite distance to the third-
body distance, the Pn(cos prforn=2, 3, 4, 5, and 6

are reguired,

In the present development, the argument cos §
can be expressed as
cos p=a

cos L + ﬁl gin L (28)

1

where L is the true longitude defined in Equation (B-21)
and

a =1 R

1" s
A"

31-g-R3 (29)
A

Y)W Ry

“are the direction cosines of the third body relative to the

equinoctial frame (Figure 4), The guantity R 3 is a unit

vector from the central body to the third bedy. Equa-
tions (28) and (29) are valid only for the direct equinoc-
tial orbit elements, For the retrograde case, the
argument cos ¥ has the form

cos =0 cos L*+ 8 sin L* (30)

T T

where L* is the retrograde true longitude defined in
Equation (B-35) and

~ FaY
oer =f Rs
:A* *
B -8 ﬁa 31)

are the direction cosines relative to the retrograde co-
ordinate frame ( f*, g¥*, w*) (Figure 5). The resulting
expressions for the Pn(cos i) are

1i3 3
P =12 = i -
2(003 P 5 [2 Sz+ 283 cos 2L + 3Sl sin 2L 1}

_1i5
Ps(eos Jj})-——z-[zals cos 3L

5 .
4 13185 sin 3L

+ 3 (282 1) cos L +38 (4 5 l)sinL]

R3 = g:jt;mce from the central body to the third P (cos )= [10552 - 12082 ‘o4 (32)
r = distan-ce from the central body to the 2 2 -
- satellite +35 (s3 - 4Sl)cos 4L + 1408183 gin 4L
Pn = Legendre polynomial of nth order
P = angle beiween the vectors T and T{-S * 2053(732 - 6) cos 2L + 4081(782-6) sin 2L:l
T See Reference 37 for a more complete description of this work.
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These expressions are for the direct equinoctial orbit
elements. Because Equation (30) for the retrograde
case hag the same form as Equation (28) for the direct
elements, it follows that all generated results can be
applied directly, provided one makes the transformation

-3 I*
L % )
. B o B

The potential is averaged over the period of the
orbit according to

2
=3 1 3
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Ingerting Equations (26) and (27) into the above gives
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The integrals in Equation (36) are evaluated via use of

Hansen's coefﬁcients.(as) An extensive table of the
Hansen coefficients expressed in terms of the equinoctial
variables is given in Reference 37. The resuliing uver-
aged potentials are:
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where the auxiliary Vs are
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and the As and Bs are given in Table 8,

Considering the disturbing functions given in Equa~-
tions (37) through {41) as well as the auxiliary quantities
given in Equation (33), Equation (42), and Table 8, it is
clear that

3

F,=R@, 0, 8,0k {43)

The partial derivatives with respect to h and k can be
taken in a straightforward manner. For the variations
with respect to p and g, further analysis is required. In
particular
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Going back to Equation {29), it follows that
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Returning to the VOP equations,
equations contain the term

R, R
Po  93q

Employing Equations (44) and (45) for aR/3p and
3R/3q with Equations (47) allows one fo write
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it is seen that these
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to obtain the final form for the VOP equations, the partial

derivatives
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must be generated.
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The derivatives of A, and B_ with respect to the relevant
variables are obtainéd from the definitions given in
Table 8. These derivatives are also listed in Refer-
ence 37.

Oblateness Potential

This paragraph gives the equinoctial variation-of-
parameters (VOP) equations for the oblateness potential,
The model employed in this analysis consists of the ob-
lateness potential arising from the centributions of the

Jz, J3, and J4 harmonic coefficient termsg, The ensuing

contributions to the total VOP equations are given in



terms of the nonsingular equinoctial orbit elements, both
for direct and retrograde orhits,

The individual contributions to the oblateness po=
{39, 40)

tential for the Jz, J3, and J4 harmonic coeffi-
cient terms, respectively, are
23/2
v = L%—)__— (1 -3 cos® i) (63)
4P
2 3/2 . '
Fo-30-¢) nwsini [Dsini-1 (64)
30 4 4
2P
2
31 -e )3/2 3 2 2 35 4
40 T 1+-§e 1-5sin i+—-é~stni
8P .
2
+-5Bi (6 -7 ain’ i ) sin® 1 cos 2w } (65)

The quantity P appearing in the above expressions is the
semilatus rectum. These expressions can be trans-
formed into corresponding forms in terms of the equi-
noctial orbit elements by employing the definitions given
in Equation (B-1) togetl}er with the auxiliary variables

b =1-hZ-k?
2 2
c =p + Q
d =1+c¢
(66)
TII:kp-th
M, = hg = kpl=-n.1
n3=hp+kq1
The symbol I has the meaning given in Appendix B.
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S-1 =1-4c+02
Sz=1--3c+e2
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85 =1~ 16¢ +36c2- 1603+c4
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gives rise to the expressions,

for the Jz contribution:

s
= 1
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20 Zasba/z 2

(68)

for the J 3 contributiop:

v 37?132

30 a4,05/2 da

for the J4 contribution:
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The VOP equations for the oblateness potential
associated with the J2 harmonic coefficient are

= 3 ( 3 2 .2
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These expressions are valid for both the direct and ret-
rograde orbits, For the retrograde case, I = -1 must
be employed.



The VOP equations for the oblateness potential where
associated with the J, harmonlc coefficient are

3
2 4
812 =1 = 15¢c + 40¢c ~ 2503 + 3¢
dh 3u Rs J3 ] 2 3 4
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R Numerical Resulls
dp 3 e 3 Iih s {p n31+3q ﬂz) z
dt 4na6 b3 ‘ d2 As indicated previously, the accuracy of analyti-
cal averaging for third-body perturbations on long-
period orbits is uaresolved, The remaining quegtions
3. = include:
UR J d (quI-3pﬂI)}
dq _ CREI P 3 2
dat 3 - 2 ! 1.  What is the effect of holding the lunar posi-
4na b d ; ; i i
tion fixed during the process of averaging
the disturbing potential?
where . 2, Do higher order terms in the Legendre
expansion improve the results?
5, . =1-13¢c +02 (74) . .
10 . To provide some physical ingight in these areas,
the analytical theories derived in the previous para-
The VOP equations for the oblateness potential raphs have been tested on the NEMD orbit (see Table 1
agsociated with the J 4 harmonic coefficient term are for initial conditions). The results of this effort are
_ glven in Tables 9 and 10, In each case, the heading at
4 the top of the table indicates the smallest term included
dh 151 Re ) 4 ‘ in the particular simulation, The results of a numer~
w7 44 1877 {p~-h 17 ) S +k [ 12 leally averaged orbit prediction run were used as a
lgna b 4 reference.* In all cases the deviations decrease as
higher order terms are added, However, the decrease
N (112 . kz) g - 4?? S ] ’ ) in the errt')r is not a smo?t.h function Qf the highest or-
13 214 i der term included. Specafwally, the improvement aris-
4 ing from the (a/R ) term is much larger than that from
I5uR” J
dk oH e 4 the (a/R ) term. Numerical results for the (a/R )
—= - ————— 187 _(q-kn I}S ~h |48
dt 7.4 4 2 373 12
16na b d term are not complete at this time. It seems clear
that the higher order terms in the Legendre expansion
N (hz N k2) g - 4n2 g ] for the thirc.i-body distu:!:'bing potential definitely reduce
13 2 14 the errors in the analytical averaging process.
(75)
151 R4 7 a Additional results relating to the accuracy of
dp _ e 4 S averaging processes are contained in References 37,
at 7 4 3 1 14"
gna’ b- d 41, and 42,
Numerical Integration Procedure
1.2 2
g 04K )53*515]
Constderable research has been performed on the
problem of determining the most efficient numerical
dg 15p rY ey a o integration procedure for solution of the orbit problem.
F i e I[k N, S, +p [14712 Multistep predictor-corrector procedures have been
8na b d shown to be significantly more efficient for this applica-
] tion than single-step methods (Reference 43). In par-
1 (hz N kz} s -5 ] ticular, an evaluation of various multistep numerical
2 3 15
* Only the lunar perturbation was numerically averaged, Oblateness and solar perturbations were treated with

analytical averaging,
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integration formulas (Reference 44) has shown that the
Adams~Bashforth predictor and Adams-Moulton correc-
tor formulas are, in general, most efficient for integra~
tion of the Class I orbital equations of motion,! For
these reasons, multistep Adams integration procedures
have been used in our orhit gencration subprograms.

To achieve the maximum possible efficiency from
an averaged prediction method, care must be taken that
the integration stepsize is limited as much as possible
by accuracy rather than numerical stability considera-
tions. In maximizing the numerical stability charac-
teristics of an orbit generator, both the numerical
integration process and the equations of motion must be
congidered, The following factors are important in this
regard,

1.  The integration algorithm
2. The order of the integration formulas

3. Special {reatment of discontinuous perturba-
tions

The authors (Reference 41) have evaluated various
predictor-corrector algorithms using integration orders
ranging from 4th to 11th for integration of the VOP equa-
tiong of motion, both precision and averaged, For in-
tegration of the precision eguations of motion, Ilth-order
integration formulas used in a Predict, Evaluate, Cor-
rect, Partial-Evaluate (PECE*) algorithm were found to
be most efficient for most applications. In this case, the
partial evaluation of Equation {19) involves a reevaluation
of the two-body partial derivatives and use of the per-
turbing acceleration computed in the first evaluation.tT
The Predict, Evaluate, Correct, Evaluate (PECE) alge-
rithm was found to be the next most efficient algorithm

followed by PE and PE(CE)H. However, for integration
of the averaged equations of motion, use of a PECE* al-
gorithm coupled with 11th-order integration formulas
unnecessarily limits the integration stepsize. The more
stable PECE algorithm is, appropriate for this applica-
tion when used with integration orders ninth or lower.

This conclusion is demonstrated in Table 11,
where results are presented from a calibration of the
mumerical averaging orbit generator for a 30-day
prediction of the AE~C circular orbit (see Table 2).

_ Errors are listed that were obtained in the radius
of perigee, r , and in the mean longitude, A, predic-
P

tions., The total number of force evaluations required
for a 30-day prediction, which is directly proportional
to the computational cost, is also listed, This compar-
ison of the PECE* and PECE algorithms demonstrates
that the relatively small stepsizes that must be used with

T A Class I differential equation is of the form
y=£@, %

the PECE* algorithm severely limit its efficiency, The
authors plan to investigate increasing the efficiency of
an averaged orbit generator by the use of a modified
PECE* algorithm in which the dominant perturbation ig
reevaluated, It is thought that such an algorithm will
exhibit a numerical stability near that of the PECE algo-
rithm at a considerably reduced cost.

In addition, an examination of results in Table 11
that were obtained using a PECE algorithm yields the
conclusion that, for large stepsizes, reducing the order
of the integrator improves both the resulting accuracy
and the efficiency. The improvement in efficiency arises
from a reduction in the number of correction iterations
réquired for convergence of the multistep starting pro-
cedure,

In the numerical computation of averaged element
rates ariging from discontinuous perturbations (such as
drag and solar radiation pressure), a more accurate
evaliation of the averaged element rates can be achieved
by evaluating the averaged derivatives only over the in-
terval of nonzero perturbation, In such cases, the equa-
tion for the averaged element rates is evaluated as

follows:
P F +7
daa (to) Y o T daa (F) )
Y a | dt F
: T -7 C
o
¥
L1 f 2_1; da (Ff ;
an a | a F
F1
F
. 1 4 T daa {F) .
27 a dt
F 5
3
where T = yvalue of the eccentric longitude at time
t
. o
daa
T averaged orbital element rate
- daa-
~=——| = orbital element rate arising from the
dt . .
L~ JC continuous perturbations
”daa"
e orbital element rate ariging from drag
L D
daa" 7
| = orbital element rate arising from solar
48 radiation pressure

T+ A recent investigatio'n (Reference 45) has shown that for some satellite orbits a final partial evaluation that
includes a reevaluation of the dominant perturbing acceleration is optimal,
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n = Kepler mean motion

a = gemimajor axis

r = magnitude of the position vector

ZE‘1 = value of the eccentric longitude at en-

trance into the atmosphere

F = value of the eccentric longitude at exit
from the atmosphere

F = value of the eccentric longitude at entry
into sunlight

&2

F = value of the eccentric longitude at exit
from sunlight

Y

The quantities F1 and ¥ o ATE determined using two-body

mechanics, The quantities F_, and T 4 Bre obtained by

3
solving the shadow eguation given in Appendix C, The
consequent elimination of irregularities from the deriva-
tive history improves the stability of the equations of mo-
tion, permitting the use of a larger stepsize.

This effect has been demonstrated for the case of a
discontinuity in the drag perturbation. In Tables 12 and
13, results from a calibration of a numerically averaged
orbit generator are shown for predictions of the AE-C
elliptic orbit (sce Table 3) of length 30 and 90 days, re~
spectively. The procedure that averages the effects of
the total perturbing acceleration vector in a single
guadrature is labeled "single quadrature,'™ The proce-
dure that averages the effects of drag and the effects of
the continuous perturhing accelerations in two geparate
quadrature computations-is labeled "two quadratures, "
An inspection of the accuracies achieved with these two
procedures shows that, without special treatment of the
drag perturbation, the stepsize is limited to 4 hours.
However, when the averaged element rates caused by
drag are computed only over the drag perturbed region,
stepsizes as large as 2 days yield comparable accuracies,

A comparison of the accuracies achieved in 30-day
prediction using variousg integration orders with the two
quadrature process indicates the orders 5 through 9
yield identical results for stepsizes as large as 2 days.
However, the efficiency of the lower orders is greater.
On the other hand, if the same comparison is made for
the 90-day predictions, an order 5 integration process
is clearly superior to orders 7 and 9 for use with the
2-day stepsize. This occurrence is an indication of-
numerical instability in the seventh and higher order
integration processes. This instability does not
manifest itself in the 30-day predictions due to the small
(about 10) number of integration steps involved,

In summary, a suitable integration procedure for
the averaged equations of motion combines Adams multi-
step integration methods (of orders 4 through 7) with a
Predict, Evaluate, Correct, Evaluate integration
algorithm,
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Osculating-to-Mean Element Conversion

The question of the importance of using mean
initial values for the orbital elements with an aver-
aged prediction method is the subject of current re-
search. The use of initial osculating elements rather
than mean elements results in 2 phase difference be-
tween the mean and osculating orbits that increases
much more rapidly with time than if mean elements
had been used, For long-term caleulations of orbital
element histories for which this type of disagreement
with the osculating orbit can be tolerated, mean initial

14
elements probably are not needed.( ) However, for

app’lications of averaging methods such as prediction
of tracking schedules or orbital lifetimes, the conver-
sion of osculating initial conditions to mean can make
the difference between satisfactory and unsatisfactory
methods of prediction. In addition, for the statistical
determination of mean elements using the averaged
equations as a dynamical model, a priori mean ele-
ments increase the probability of convergence of a
leagt-squares estimation procedure. Therefore, to
take full advantage of the possible applications of an
averaged prediction capability, the conversion of oscu-
lating to mean elements is required. This section dis-
cusses various conversion procedures and presents an
evaluation of the resulting mean elements,

The conversion of osculating to mean elements
can be handled either analytically or numerically, The
best known analytic methed i3 an iterative procedure

40
based on Brouwer theory.( » 48) This approach is

limited by the fact that drag and lunar-golar effects are
not included in the conversion, It will be demonstrated
below that for strongly drag-perturbed orbits such as
the AE-C elliptic orbit (Table 3) or strongly lunar-
perturbed orbits such as the IMP type (Tables 5 and 6),
this is a significant limitation,

A numerical conversion can be performed using
either of the following procedures:

1. Differentially correcting the initial state
vector using high-precision observations
and an averaged prediction model.

2. Solving the set of integral equations

t +T/9
1 1]
0 -éﬁ“f 2t

At )= {77)
a tO-T/z

where A (t ) = mean orbital element at the
time of interest

T = mean period
a (t) = osculating orbital element

at time t

In hoth of these procedures, the appropriate length for
the averaging interval also deserves consideration,



Musen and Sm ith(47) used a procedure related to proce~
dure 2 above to compute mean orbital elements for an
IMP orbit similar to that given in Table 5 that has a
6~day period, In this regard, they computed the mean
period over an interval equal to approximately the lunar
period (five satellite revolutions). The mean elements
.were then computed over one or two mean periods. The
authors are investigating the possible advantage of using
multirevolution averaging intervals in the conversion
process to more exactly average out the effects of medi-
um period ogcillations., For example, for the IMP mis~
sion orbit (Table 6), which has an orbital period that is
in nearly 2:1 resonance with the lunar period, use of a
two-revolution averaging interval is being investigated,

The authors have experimented with the above
methods to obtain mean elements for several orbit
types, TFigure 1 presents a comparison of semimajor
axis predictions that were obtained using a high-
precision, time-regularized orbit generator with pre-
dictions obtained using a numerical averaging orbit gen~
erator., The test case is the AE-C elliptic orbit
(Table 3) perturbed by J2 and J3 harmonic effects, so-

lar and lunar point mass effects and atmospheric drag.
Clearly, for this orbit, the use of Brouwer mean ele-
ments offers no improvement over the use of osculating
initial elements, The mean elements labeled "type 1"
were obtained using procedure 1, given above,

The Differential Correction procedure that was
used in this conversion consists of a weighted least-
squares estimator coupled to a numerically averaged
orhit generation process. The partial derivatives of the
state vector with respect to the initial state vector are
approximated by analytical two-body expressions, The
Differential Correction was performed over one revo-
Iution of simulated observations, which were computed
using a high-preclsion orbit generator. Figure 1 shows
that the prediction obtained using the mean elements
computed using the first conversion procedure is clear-
ly superior to that obtained using osculating initial con~
ditions. The divergence of the mean from the osculating
prediction after 80 days can arise from small errors in
the initial mean orbital elements. The appearance of
this dizcrepancy in a reglon of rapid semimajor axis
decay can also be an indication of a breakdown in the
correctness of the averaging assumption of constancy
of the slowly varying elements over one orbital period.

An implementation of the second conversion pro-

cedure has been suggested previously by Uphoff.(M) He
suggests performing a one-revolution precision numer=
ical inftegration and, at the same time, evaluating
Equation (77) for the mean semimajor axis at each in-
tegration step, This procedure is terminated when the
integration time is equal to the mean period derived from
the current value computed for the mean semimajor axis,

The authors are curreatly implementing conver-
sion procedure 2, above, in the following manner, First,
the integral equation for the mean semimajor axis )
[Equation {77)] is solved iteratively to obtain the mean
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period. The required values of a (t) are computed from
the position and velocity vectors at time t, which are
obtained by interpolation from a file of accelerations
that were computed using a high-precision orbit gener-
ator. This procedure will be available for conversion of
input conditions at the beginning of an ephemeris gen-
eration or differential correction run, as well as for the
conversion of the converged osculating results at the end
of a differential correction run.

Optimization of Averaging Methods

Because the chief advantage of averaging methods
is their efficiency, considerable attention has been paid
to maximizing this characteristic., This prohlem can be
approached from two directions:

1. Reduction of the cost-per-integration step of
evaluating the orbital element rateg.

2.  Reduction in the total number of integration
steps required for computation of a given arc
by improving the accuracy and numerical
stability of the equations of motion,

This section discusses the application of these tech-
nigues to optimization of averaging methods.

In cases for which the averaged derivatives are
computed numerically, the cogt of a derivative evalua-
tion can often be reduced significantly by choosing the
lowest quadrature order that gives the desired accuracy.
However, this choice is orbit-dependent.

Por example, for predictions of the AE-C circular
orbit (Table 2}, use of 2 12th-order quadrature for com-
putation of the averaged rates yields nearly the same re~
sults as use of a 24th-order quadrature., This conclusion
is demonstrated in Table 11 for a computation of the nu-
merically averaged rates arising from the total perturba-
tion model, Table 14 presents a comparisen of AE-C
circular orbit predictions that were made using analyt-
ically averaged expressions for the rates arising from
J2, J_, solar, and lunar effects and a numerical quad-

rature technique for computation of the averaged rates
arising from atmospheric drag. An examination of these
results indicates that among the orders tested, a 12th-
order quadrature is probably optimum for computation
of the averaged rates arising from atmospheric drag.
Results presented in Table 17 for computations of the
ESSA-8 orbit (Table 4) using a numerically averaged or-
bit generator demonstrate that a 12th-order quadrature
can be used successfully for this application as well.
Similarly, in the numerical computation of the averaged
rates caused by lunar effects for the IMP-J orbits, a
9th-order quadrature was found to be sufficient for

2 .
most applications.(4 ) This result is demonsirated in

Figure 2. Nearly equivalent orbital predictions were
obtained with a 9th-order quadrature as with a 24th—
order process,

On the other hand, for the AE-C elliptic orbit
{Table 3), a 24th-order guadraturc was found to be nec~
essary for computation of the averaged rates arising
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from both atmospheric drag and continuous perturba-
tions, Filgure 3 demonstrates this conclusion for com-
putation of the averaged rates ariging from atmospheric
drag, Figure 3 presents a comparison of semimajor
axis predictions for the AE~C elliptic orbit, In these
predictions, analytically averaged expressions were
uged in the computation of the averaged rates arising
from the Jz, J3, solar, and Iunar perturbations. A

numerical quadrature was used only in the computation

of the perturbing acceleration arising from atmospheric
drag, As the order of the quadrature is increased, the
predictions approach the solution obtained using the 24th~
order solution. A prediction was also made using a
23rd-order quadrature process. The predicted semi-
major axis agrees {o within 4 kilometers at 80 days

with the 24th~order solution. This result indicates that
for predictions in this accuracy range, a 24th-order
quadrature is necessary.

In addition, it might be possible to reduce the cost-
per-integration step by using an analytical model rather
than a numerical method for computing the averaged de~
rivatives, Because apalytical models usually are based
on a get of limiting assumptions, care must be taken that
the model is appropriate to the orbit of interest. Good
examples of this are NEMD calculations (Tables 1, 9,
10), which were made using a hybrid averaging proce-
dure. The zonal harmonic and the solar effects were
computed analytically and the lunar effectg were com-
puted either analytically or numerically. For the same
stepsize, the ratio of the corresponding computational
cost was 1:6. This result indicates that it might bhe
possible to achieve a substantial improvement in the
efficiency of an averaged orbit generation process by
using the appropriate analytical expressions for the
averaged element rates in place of numerical averaging
computations, The authors plan to extend their inves-
tigation to include comparisons of analytical and nu-
merical averaging computations for oblateness and solar
point mass effects within the same pregram structure.

The following are methods for reducing the total
number of integration steps required to achieve g certain
accuracy. A reduction in the error that iz introduced at
each derivative evaluation reduces the resulting global
error, permitting the use of larger integration step-
gizes. Special treatment of the equations of motion
arising from discontinuous perturbations, which was
discussed above, is an improvement that falls in this
category. In addition, choosing a multirevolution aver-
aging interval to average out the medium period effects
of a resonant perturbation more completely might also
produce a similar improvement, This smoothing proc-
eag results in increased numerical stability in the equa~
tions of motion, Such a stabilization effect is indicated
for computation of lunar effects on the IMP-J mission
orhit (see Table 6) for which a near 2:1 respnance

exists hetween the lunar and satellite periods.(42) Re~
gults from 3-year predictions that were computed by
nmumerically averaging over one and two revolutions
are presented {n Tables 15 and 16, respectively, A
comparison of these results shows that the latter
process yields a slower growth of error with stepgize,

7

A careful choice of the perturbation model can
reduce random errors. For the case of a close-Earth
gatellite, such as ESSA~-8 (Table 4), the inclusion of the
tesseral and sectoral harmonics in the 4 X 4 gravitational
model uged in the integration of the averaged dynamics
severely increases the error of the prediction for a
given stepsize, This conclusion was derived from the
results presented in Table 17. For thig orbit, at a step-
size of 2 days, the error in a 14-day semimajor axis
prediction increases from 0. 0003 kilometer to 0.13 kilo-
meter with the addition of the tesseral and sectoral har-
monics. An analysis of this orbit to determine the
dominant harmonic terms in the gravitational model
shows that the only important tesseral and sectoral terms

are of order 13.(48) Therefore, the inclusion of tes-
seral and sectoral terms in the gravitational model
introduces unnecessary errors, rather than improv-
ing the solution, This conclusion has been substan—
tiated in Differential Correction {DC) studies performed
on ESSA-8 data using a numerically averaged prediction
model to obtain mean elements, In this investigation, a
DC was performed at che epoch, the converged results
were propagated for 14 days, and a second DC was per-
formed at this second epoch. The predicted and con-
verged state vectors were then compared with the
corrected osculating state vector. The results of these
comparisons, which are given in Table 18, show that
smaller residuals and comparable prediction exrrors

in the position vectior were obtained using a fourth-
order zonal model, compared to results obtained using
a full fourth-order gravity model, It is possible to use
a stepsize as large as 12 hours with the fourth-order
zonal model, Whereas, the prediction errors in

Table 17 indicate that this would not be possible with
the full fourth-order model, Clearly, the appropri-
ateness of the perturbation model to the satellite orbit
of interest should be given careful attention.



Future Work

At several points this paper, specific problems
areas were identified, -This paragraph provides a uni-
fied discussion of those aspects of the method of aver-
aging that require further consideration,

Ag indicated in the section entitled Optimization
of Averaging Methods, numerical evidence (based on
testing of ESMAP for the NEMD case} indicates that
analytical averaging can he much more efficient than
numerical averaging procedures in terms of computa-
tional cost, However, some perturbations (notably at-
mospheric drag) do not readily admit to an analytical
averaging process. Thus, in general, a hybrid aver-
aging method might be optimum in which oblateness and
lunar~solar effects are treated analytically and drag is
treated via numeriecal quadrature. As yet the question
has not been resolved of whether the same computa-
tional advantage remains when an analytically averaged
orbit generation process is caltled by a complicated
trajectory program, such as GTDS, which has various
interface complexities including ephemeris files, so-
phisticated triggering options, and comprehensive input
and output options, This problem deserves further con~
sideration.

Further development of analytically averaged
equations of motion in terms of the equinoctial elements
is needed. While the nonsingular variables have defi-
nite advantages, many analytical results that are rele-
vant to the method of averaging have been derived only
in terms of the classical orbital element formulation,
For example, consider the role played by the inclina-

Lk

tion functions F (i) the Hansen coefficients X 0

Imp
which are used in the lunar-solar disturbing function
and in the gravitational potential, In terms of these
functions, the analytically averaged equations of motion
for the lunar-solar and gravitational perturbations can

be expressed in a very concise form.(ls) The analogs of
these funetions probably exist in nonsingular variables
but their derivation represents a comprehensive task in
terms of algebraic manipulation. TFor this application,
the use of a computer program for the automated ma-
nipulation of literal Poisson series is recommended.

R. Broucke, Jet Propulsion Laboratory, has initiated
an effort to modify an existing Polsson series manipula~

tion system(49) to work in equinoctial coordinates. At
present the Keplerian portion of the system has been
modified to treat h and k as polynomial variables and )
as a trignometric variable, The following series have
been generated: F ~ ), sin (F - ), cos (F -)), sin T,
cos F, a/r, and r/a, The completed nonsingular
Keplerian processor will have the capability to generate
analytically averaged equations of motion.

The disadvantage of the choice of h and k as poly-
nomial variables is that h and k are treated as small
parameters. It might be possible to modify the set of
nonsingular variables such that the Poisson series
processing is exact, One modification of the element
set is given in Chapter 5 of Reference 41.
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An averaged orbit generation method based on the
formulation in Reference 41 deserves consideration
from another point of view, Due to the simplificd equa~
tions of motion, the derivation of the differential equa-
tions for the state transition matrix is greatly simplified
relative to the derivation of the state transition matrix

differential equations for the equinoctial elements.(s)

With respect to applications, a calibration of the
first~order averaging process is needed. This calibra-
tion should include an evaluation for operational sup~
port apptications such as network maintenance, The
importance of the osculating to mean element trans-
formation for various applications should also be con~
sidered, as well as the most efficient choice for the
quadrature order when numerical averaging is used,
This evaluation should also include a comparison of
the numerical error bounds with those attributed to
the averaged orbit generation process in References 50
and 51.

Development of second or higher order averaging
procedures also deserves attention, For the orbital
predictions of strongly drag-perturbed satellites,
there is numerical evidence that a breakdown in the
first~order averaging assumption might introduce
significant errors, Thus, higher order averaging
theories might extend the range of applicability of
long-term methods of orhit prediction. It is recom-
mended that the development of higher order averag-
ing methods start with the basic averaging expansions
presented in the section entitled Averaged Orbit
Generation Methods and in Reference 7,

Concluding Remarks

In this paper, a general overview has been pre-
sented of the history and current status of the applica-
tion of the method of averages to problems in orbit
determination. Analytically averaged orbital element
rates have been presented for the equinoctial elements
for the oblateness and third-body perturbations, A
numerical averaging process in terms of equinoctial
elements has also been included, Tor the integration
of the averaged equations of motion, low-order multi-
step integration formulas used in a PECE algorithm
are recommended, The importance of careful treatment
of discontinuous perturbations and of an osculating to
mean element transformation was demonstrated.
Methods for optimization of an averaged orbit generation
process were indicated, such as a reduction in the
quadrature order in numerical averaging and the use of
analytical rather than numerical averaging whenever
possible., In addition, areas that require further con-
sideration to develop an optimum averaged orbit genera-
tion process have been indicated,



Appendix A - Theory of the Variation-of-Parameters Formulation

The equations of motion of a satellite are ex-
pressed by the gencral formula
s HY o
T+ 3 P
¥

(A-1)

where T = position vector in the inertial Cartesian co-
ordinate system

T = acceleration vector in the inertial Cartesian
coordinate system

K = gravitational constant
P = total perturbing acceleration

Solutions to the unperturbed problem

T+ HE (A-2)
)
[%
can be written as
T=Xlawm] (A-3)
_:n-_a_)? S
Xmgz+ @ (A4}

where Tis a vector of orbit elements for which the deter-
minant

ol
AW

(A-5)

where g%,_and %%_aré 6 x 3 matrices of partial derivatives,

The variation-of-parameters (VOP) method is
based on the concept of treating a perturbed satellite
orbit as a continually changing conic section or oscu-
lating orbit. With this method, solutions Tt} are
sought to Equation (A-1) of the form Equation (A-3),
but having orbit elemente that vary with time. There-
fore, at any time, t, T and ¥ can be related as follows:

i) =X [At)] (A~8)

The rate of change of the orbital element with re-~
spect to the reference motion can be separated out as fol~
lowa:

F=at g (A=T)

where%é.'(u).are the element rates for the case P = 0 and

_-5(p) are the element rates arising from the perturbations,
Using these definitions and Equation {(A—4}

o I o R D) -
S N (A-8)

19

2 i(ﬂ.a~)=%+§,. 2)

Tat\Em
(A-9)
4 (3% o)
dt \a5"
ax- I
where—g_} and 35-2re 3 x 6 matrices of partial derivatives,

Substituting Equations (A-6) and (A-9) info Equa-
tion (A-1) gives three equations involving six variables,
To make the problem definite, three additional conditions
are chosen, It is advantageous to make the following
cholce

‘g—;,_.ii(p) =0 (A-10)
which matches the formula for the unperturbed velocity
to that giving the actual velocity, With this restriction,
the velocity in Equation (A-8) reduces to that for unper-
turbed motion in Equation (A-4). Therefore, the orbit
18 specified by an instantaneocus set of orbit elements,
Position and velocity can then be determined from these
osculating orbit elements using the formulas of unper-
turbed elliptic motion.

Substituting Equations (A~6) and (A-9) into Equa-
tion (A-1) and imposing the condition given in Equa~
tion (A-10) yields

m% 70 _p_

(A-11)

Using the fact that the functions™X and ¥ are solutions to
the unperturbed problem [ Equation (A-2)7, Equa-
tion (A-11) reduces to

K ) _ -
= & =7 {A-12)

This equation, with Equation (A-10), gives the system of
equations to be solved

;

(A-13)

o 1oy

Using the properties of the two-body matrizant (Refer-
ence 12), this set of equations can be solved for'.ﬁ'(p),
yielding the VOF equations

1 P
p) {83702 ||P -
a [a?;' x}[():l A-14)
30 _ %—- ) (A-15)



The orbital parameters at a specific time are ob-
tained by integrating the equations of motion numerically,
These equations can he expressed in a different form by
using the fact that a conservative force is equal to the
gradient of a potential function, Thus,

P=VR+Q (A-16)

where R = perturbing potential due to conservative forces

Q‘= perturbing acceleration due to nonconservative
forces

Substituting Equation {A-16) into Equation (A-15) gives
the set of equations

(A-1T)

) 2. (12
Using the relationshjp( )

2a § -
i X
—_—= - E (a,, a)— (A-18)
H 3
ax ey j aj
where (ai, aj) = Poisson brackets,
yvields
6 da
,0) _ R, = 9
&= Z(ai’aj)aaj+a'>?' Q (A-19)
=1

This form for the VOP equations is useful when the
averaged dynamics are under consideration.

Appendix B - Two-Body Mechanics With Equinoctial Elements

Transformation from Classical Elements to Equinoctial
Elements

The direct equinoctial elements are given by

=a

e sin (w+Q)

e cos (w+ Q) (B-1)

]

Mo +w+ §2
= tan (1/2) sin §2

a
h
k
*
p
q =tan (i/2)cos @

where a, e, i, Mo’ w, and & are the classical orhit ele-

ments. The elements h and k are the components (in the
orbital frame) of the eccentricity vector that points to-
ward the perigee and has the magnitude e. Elements p
and g are required in the rotation matrix between the
inertial frame and the orbital frame, The element Ao

is the mean longitude in the classical literature, The
retrograde equinoctial elements are given by
a =a
h = ¢ sin (w-
r (w-2)
=g cos (w~-
k. (w-0) (B-2)
A =M +w-80 .
or s}
p, = cot (i/2) sin @

cot (L/2) cos @

The quantities hr and kr are the components of the eccen-

tricity vector relative to the retrograde orbital frame.
The elements P. and qr are required in the rotation ma-

trix between the inertial frame and the retrograde orbital
frame,

The crbital coordinate frames can be defined in terms
of the classical orbital elements; this is done in Figure 4
for the direct case and in Figure 5 for the retrograde
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case, In Figures 4 and 5, unit vector # is the normal to
the orbit plane. For the direct case the T andg unit vec-
tors are in the orbital plane, The direction of the T unit
vector depends on the classical orbit elements Q and i,
ThR unit vector g completes the right-handed triad of

y E, and Qr. For the retrograde case, the f*, @*. and Q'
unit vectors comprise the right-handed triad. Mathe-
matically, the unit vectors can be expressed in terms of
the equinoctial elements by

l-pz+q2
2 {B-3)
-2p1
2l

2 2
(1+p ~q)I

(B-4)

2q

2p

= 21 > -2q (B-5)
1+p +9g

2 2
(l-p -q)1

Equations (B-3), (B-4), and (B-5) require some comment,
I I=+1, the p and ¢ elements defined in Equation (B-1)
mu,gt be uﬁed in Equatjons (B-3), (B-4), and (B-5), The

» £, and W unit vectors computed with I = +1 have the
meaning indicated in Figure 4, IfI = -1, the retrograde
p and q defined in Equation (B-2) muAst ke usedAin Equa-
tions (B~3), B-4), and (B-3). The {, @. and w unit vee-
tors computed with I = -1 have the meaning indicated in
Figure 5, This notation will reduce the repetition of al-
most identical formulas in the remainder of the paper,
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Transformation from Positioh and Velocity to Equinoctial
Elements

Thig paragraph gives the formulas required to com-
pute the equinoctial elements from the position and veloc-

ity, The semi-major axis is
a ,,(%— - —"?1;-)“1 (B-6)
The eccentricity vector is given by

The unit vector normal to the orbital plane is given by
A TxE

qe——
KxX

Unit vector % has the exact same meaning in Equa~
tion (B-8) as in Equation (B-5), These relationships

(B-8)

lead to
&
. x 9
PETIG, T ®-9)
&
4= 1T%, (B-10)

In Equations (B~9) and (B-10}, if I = +1, the p and q [de~
fined in Equation (B-1)] result, If I = -1, the retrograde
p and g [defined in Equation (B-2)] result, The unit vec-
tors f and Q (or t* and Q*) may now be domputed using
Equations (B-3) and {B~4}, The equinoctial orbital ele~
ments h and k are computed using the formulas

h=4%.

k=¢-

B-11)
(B~12)

> g

) A
If I was set equal to ~1 in Equations (B-3) and (B-4), £*
and Q* were computed and Equations (B-11) and (B-12)
give hr and kr:

g

b

h

* -1
r B-13)

* : : (B-14)

- 0>

o}

k =
- Tr
The only remaining element to be computed is the mean

longitude, A, We first compute the posﬁmfe coordinates
X and Yl relative to the orbital frame 1, g, & by

A
X1=‘5c'- f {B~15)
Y1=i"-é‘ (B-16)

Then we compute

2
-k p X1~hk,3Y1
cos F=k+ B-17}
a \/1-h -~k
2
(1-h08) Y, -hkpX
gin F=h + 1 (B~18)
1-h -k
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where the auxiliary variablefis

B= L
1+ Vi-4% -k (B-19)
The mean longitude A is given by
A=F-kginF+hecos F {B-20) -
For the retrograde case, the quantities ?* Qr* h - and

k should replace f g, h, and k in Equations (B~ 15)

through (B-20), The result of Equation (B-20) is the
retrograde mean longitude defined in Equation (B-2).
The derivation of Equations (B-17), (B-18), and
(B-20) ig explained in the next paragraph.

Transformation from Equinoctial Elements to Position
and Veloeit

The key te this formulation is the uge of the longi-
tudes &, F, and L, defined by

A =M+w+

F =E+uw+Q B-21})
L =v+w+§
where M, E, and v are the classical anomalies. Ele-

mentary manipulations show that Kepler's equation can -

be written in terms of the eccentric longitude F
A=F+hcosF-ksinF (B-22)

Once Kepler's equation hag been solved, the position and
velocity vectors can be .expressed as

— A A

x=X1f+Y1g (B-23)
and

- e A . A

X= Xl‘ f+ Yl g B-24)

In these equations the unit vectors ?and@ are computed
using FEquations (B-3) and (B-4). The coordinates Xl, Y1
)'il, and Y | Telative to the equinoctial frame are given by

2
X1=a[(1-h ,B)cosF+hkﬁsinF—k] (B-25)
2 ;
era[(l-k ,B)smF+h.k,BcosF-h] (B-26)
na2
X1 [hk g cos F - (1 - h p) sin F] B~27)
na2 '
3'(1= [(1 K2 8) cos F - hkg sin F] " (B-28)
where the auxiliary equation
=1-kcos F-hsinF (B~29)
is necessary for the velocity'coordinates. The coordi-

nates can also be expressed in terms of the true longi~
tude by

=rc
X1 03 L

B-30)

Yl =rsinl, (B-31)



X, = e (b + sin L) (B~32)
Vi-1" -k
{’1= == (k + cos L) (B-33)
1-h" - K
2 2
r=a(l-h" -k} /(1+kcosL+hasinL) (B~34)

Equations (B-30) through (B-34) will be used in the nu-
merical averaging procedure for the atmospheric drag,
Also, the right-hand side of Equation (B-30) can be set
equal to the right-hand side of Equation (B~25), This re=
lation and one involving Equations (B-31) and (B-26) can b

e

solved simultaneously to give Equations (B-17) and (B-18).

For the retrograde case, the longitudes are defined
by

=MW~ ¢
F* =E+w- 4§ (B-35)
I mviw-Q
AA
and the quantities A%, F*, L*, f*, g*, hr’ and kr replace

the direct variables in Equations (B-22) through (B-34).

Poisson Brackets

In the present application, the Poisson brackets must
be given in terms of the equinoctial elements. The re-
sults are obtained by direct substitution into the previous

(34)

results by Broucke and Cefola and are listed in

Table 19,

Partial Derivatives of the Equinoctial Elements With
Respect to Velocity

- The partial derivatives 9a/5%, ap/s%, and 3q/a% are
obtained directly as functions of the equinoctial elements

by using the results of Broucke and Cefola. 34) However,
the expressions for ah/ax, 8k/8x, and 8a /ax in terms of

the classical orbit elements are not so eas1ly translated
into the equinoctial elements., To compute these quan-
tities, we have to use the relationship :

*T-Z(a-

E)a‘B

- (B-36)-
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which requires the Polsson brackets from Table 19 and
the partial derivatives of the position vector. For 3%/ 3h
and 73k, we need the partial derivatives of X and Y
which are

E_X_l=_kﬁxl+£yi'
ah n G 171
aX. hgX_
A 1 1 a .
3  n *e® Y@ :
. ®B-37)
3y, kfY
A1 Ay
ah n G(X1Y1+G)
a0
¥k G 11 n

With these results, the position partials can be specified,
as shown in Table 20, Substitution of the results of
Tables 19 and 20 into Equation (B-36) gives the desired
results, which are listed in Table 21. Note that the above
expressions and those for ah/3% 3k/8 and 3)/3¥in
Table 21 are greatly simplified relative to the expres~
sions for the same guantities that were given in Refer—
ence 35, This simplification, in turn, simplifies the
derivation of the differential equations governing the
partial derivatives of the mean elements with respect to
mean elements at some fixed epoch. (See Reference 6
for a derivation of the differential equations governing
the partial derivatives based on the equinoctial formula~
tion presented in Reference 35.)

Finally, it is possible to express the matrix

aaa/a‘;?in a variety of coordinate systems, The ex-

pression for 3a a/‘é‘i"in terms of the unit vectors

(B-38)

(B-39)

and @ is given in Table 22 and has particular application
in the computation of drag perturbations via the numerical
averaging technique,



. “Appendix € ~ Formulation of Shadow Equation in Terms of Equincetial Variables

In terms of equinoctial variab[e's, the shadow
equation(sz) for the entry and exit values of the true
longitude is glven by

le-m2 (1+I~:cosL+hsinL)2
(c-1)

—(d cos L + 8 sin L)2 =0

T
where m = _"‘“”‘ez“"“'“é"
avl-h -k
a=R - F
B
B=R - ¢

In the above equations, r, is the mean equatorial radius
to the Earth and ﬁs is a unit vector pointing to the Sun.

To obtain the solution to Equation (C-1), the following
quartic equation must be solved:

4 3
+ A
AO cos” L 1 cos

+ =
+A3 cos L A4 0

L+ A2 cos2 L
(C-2)

where AO = 4B2 + C2

A1 = BBmzh + 4Cm2k
A2 = -4B2 + 4m4h2 -2DC + 4m4k2

A3 = —SBmzh - 4Dm2k

2
A4 = -4m4h +D2
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B=af + m hi

2 (k2 _h2)

p=1-82-m® @ +nd

C=a2-32+m

The real-valued solutions to the quartic must be sorted
to eliminate extraneous roots and to determine the entry
and exit valuea of true longitude, In addition, solution of
Equation (C-2) determines only the magnitudes of the
true longitude that satisfy Equation (C~2), The correct
values of the true longitude must satisfy Equation (C-1)
as well as the condition

R -TegcosL+fsinL<o

At entry into shadow, the following condition must
hold

38

>L <9

and, at exit from shadow,

as
aL> 0

Previdusly, the shadow equation has been formu-

lated in terms of equinoctial variables by Edelbaum
using the eccentric longitude as the angular variahle.
The formulation presented above is considerably
simpler,
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Table 4, ESSA-8 State Vector, ¥poch-May 29.0, 1970,
Reference Frame-True of Date

Table 1. NASA-ESRO-Mother-Daughter (NEMD) State
Vector, Epoch~October 29, 1977 14 0, 0™,

Reference Frame~Mean of 1950.0 .
I OSCULATING ELEMENTS MEAN ELEMENTS
OSCULATING ELEMENTS MEAN ELEMENTS
a = 7822.834 km a = 7815.381 km
a = 70849.14233 km | & = 70376.60299 K e =  0.00309 e = 0.00284
e = 0890723236 e = 089014687 ” iz loteoz deg | i = 101811 deg
i = 290203198 deg P = 28.970265 deg : §g§841 deg : 207.841 deg
- 494445 - w = 742 deg | w= 348.250 deg
: deg | £2 49.43415 deg M= 18813 - deg | M= 23286 deg
w= 0.2096777488  deg W= 0.230115389 deg
M= 360.0 deg M= 359.99789 deg
]
Table 2, Atmosphere Explorer-C (AE-C) Circular Tablg 5. Test Case: Interplanetary Monitoring Platform
Orbit State Vector, Epoch-August 21, 1974 (IMP) Transfer Orbit State Vestor, Epoch-
100 24M ¢, 08, Reference Frame-True November 1.0, 1973, Refercnce Frame-Mean
of Date of 1950, 0
MEAN ELEMENTS OSCULATING ELEMENTS MEAN ELEMENTS
a © BB668.14260557 km a = 138572.57 a = 138592.254
e = 0.0001 e = 0.95 B = 0.950094
i = 67.866391779 deg i = 33.82 P = 34.30168
£= 924004760159 deg 2= 221.55 Q= 220.6324
w = 310.292209633 deg [A RS 135.73 w= 136.46
M= 55.2316996621 deg = 0.02 M= 0.02023
Table 3. Atmosphere Explorer-C (AE-C) Elliptic Orhit Table 6. IMP Mission Orbit State Vector, Epoch-
St%te Vector, Epoch-February 26, 1974 November 1,0, 1973 (Osculating), Novem-
10" 24™ 0.0%, Reference Frame-True ~ ber 7.0, 1873 (Mean), Reference-Mean
of Date of 1950.0
: ELEMENT MEAN ELEMENTS
QSCULATING ELEMENTS MEAN ELEMENTS OSCULATING EL S
: a = 235986.0 km a = 238136.8 km
il a = B525.7231 km a = 8520.88766 km e = 0.01 e = 0.04815321
e = 0:23761691 e = 0.237686657 i = 320 deg i = 32.196 deg
i = 68.072741 deg i = 68.0653491 deg o= 0.0 deg Q-= 359.756 deg
= 01.574936 deg a-= 91.56476444 deg w = 30.0 deg w = 66.114 deg
w= 93.761824 deg W = 03.8385533" deg M = 0.0 deg M= 315,739 deg
M = 27536757 deg M= 27531288 deg
Table 7. General Purpose Averaging Programs in Classical Elements
PERTURBATIONS TREATED PEATURBATIONS TREATED
PROGRAM  |REFERENCE VIA ANALYTICAL VIA NUMERICAL COMMENTS
AVERAGING AVERAGING
KAUFMAN 13 LOW-ORDER ZONAL GRAVITY ATMOSPHERIC DRAG; TESSERALS | THIAD-BODY POTENTIAL EXPANDED TO
HARMONICS, THIRD BODY {a/R3)8; NONROTATING ATMOSPHE RE
UPHOFF 14 OBLATENESS; DRAG; THIRD- INCLUDES MODIFICATION FOR CIRCULAR
BODY EFFECTS ORBITS
: COOK 15 ZONAL GRAVITY HARMONICS;
THIRD BODY
ROTH 16 4, THIRD BODY ALSO INCLUDES TREATMENT OF ATMOS.
PHERIC DRAG TAKEN FROM KING-HELEIZH)
LORELL 17 ZONALS: TESSERALS, THIRD- TREATMENT OF TESSERALS ASSUMES
BODY THAT CENTRAL BODY ROTATING ANGLE
IS FIXED FOR ONE ORBIT OF SATELLITE
WAGNER 18 ZONALS, THIRD BODY ATMOSPHERIC DRAG ANALYTICAL RESULTS FROM KAULAISD)
—
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Table 10, Inclination-Deviation Between Analytical
Theory and Numerical Averaging (Degrees)

Table 9, r_-Deviation Between Analytical
’I%eory and Numerical Averaging (km)
TIME
2 3 * ]
FR?DMAE"PS?CH Ia.'ﬁ:! (afRai maa% (a,‘Hal
1] a0 [11+] 0.0 0.0
100 s21 3r.2 33 14
200 80.2 5.7 125 64
300 1386 l 106.7 27.% 136

LI LS 18R Ry tormyt o
IDAYS)
0 00 0¢ a0 00
100 A9 43 a7 4
200 o4 59 4 A
200 79 70 13 09

Table 11. Accuracy and Cost Statistics for 30 Day Predictions of the AE-C Circular Orhit
Perturbation Model: Numerical Averaging-Jg, Jg, Solar and Lunar Point Masses
Atmospheric Drag (Harris-Priester Model)

INTEGRATION INTEGRATION QUADRATURE STEPSIZE TOTAL afg AN
ALGORITHM QORDER QORDER (HR) FORCE {KM} {DEG)
EVALUATIONS
PECE n 24 2 13000 REFERENCE
PECE t1 12 2 9000 0003 .002
PECE 11 12 48 1670 004 013
PECE 9 12 43 1330 0007 | 009
PECE 11 12 96 1880 023 .04
PECE 9 12 96 1525 .004 013
PECE 7 12 2] 1000 001 013
PECE® 7 12 2 UNSTABLE
PECE* 5 12 4 2500 1 .0003 001
PECE* 5 12 -1 UNSTIABLE
Table 12. Accuracy and Cost Statistics for 30 Day Predictions of the AE-C Elliptic Orbit

Perturbation Model: Numerical Averaging-Jg, J3, Solar and Lunar Point Masses,.
Atmospheric Drag (US '62 Model)

METHOD INTEGRATION INTEGRATION [ QUAODRATURE | STEPSIZE | TOTAL FORGE |&a| larpi
ALGORITHM ORDER ORDER (HR) EVALUATICONS {km) {km)
SINGILE QUADRATURE PECE 9 24 2 18000 34 011
SINGLE QUADRATURE PECE 9 24 g 6500 t4.3 056
SINGLE QUADRATURE PECE 9 24 12 UNSTABLE
SINGLE QUADRATURE PECE 7 24 12 UNSTABLE
TWO QUALRATURES PECE 9 24 2 17700 REFERENCE
TWD QUADRATURES PECE 2 24 8 5680 002 .0001
TWO QUADRATURES PECE g 24 12 4200 012 0002
TWO QUADRATURES PECE 7 24 12 3800 012 .0008
TWO QUADRATURES PECE 7 24 24 2780 052 .0044
TWO CUADRATURES PECE |3 24 24 2250 082 .0048
TWO QUADRATURES PECE 9 24 48 3200 058 008
TWO QUADRATURES PECE 7 24 48 2400 083 .008
TWO QUADRATURES PECE 5 24 48 1800 083 .009

Table 13, Accuracy and Cost Statistics for 90-Day Predictions of the AE-C Elliptic Orbit
Perturbation Model; Numerical Averaging-Ja, Ja, Solar and Lunar Point Masses,
Atmospheric Drag (US '62 Model)

METHOD INTEGRATION | INTEGRATION | QUADRATURE | STEPSIZE |TOTAL FORCE |sal larpl
ALGORITHM ORDER ORDER (HR) EVALUATIONS | {km) | * [km}

SING LE QUADRATURE PECE 9 24 2 54400 7.7 .37
SINGLE QUADRATURE PECE 9 24 g 15480 450.0 | 1000
SINGLE QUADRATURE PECE 9 24 12 UNSTABLE
SINGLE QUADRATURE PECE 7 24 12 UNSTABLE
TWO QUADRATURES PECE 9 24 2 53700 REFERENCE
TWO QUADRATURES PECE 9 24 8 14680 .28 013
TWO QUADRATURES PECE 9 24 12 10020 .55 042
TWO QUADRATURES PECE 7 24 12 9800 55 044
TWO QUADRATURES PECE 7 24 24 5780 3.18 06
TWO QUADRATURES PECE 5 24 24 5250 3.04 053
TWQ QUADRATURES PECE 9 24 48 4600 73.0 4.1
TWO QUADRATRUES PECE 7 24 ‘48 3800 5.3 11
TWO QUADRATURES PECE 5 24 48 3240 3.3 .08

Table 14, Comparison of 40 Day Predictions of the AE~C Circular Orbit

Perturbation Model: Analytical Averaging~Jg, J3, Sun, Moon
Numerical Averaging-Atmospheric Drag (US '62 Model}

STEPSIZE QUADRATURE jaa) rpl 1 [oM]
{HR} ORDER tken} | lkm} | {deg}
6 24 REFERENCE
24 18 0002 | o002 | .01
24 12 0003 | .0001 { .001
24 9 005 006 | .022
48 12 .003 .004 .008
a6 12 025 032 | .38
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Table 15, Accuracy Statistics for 3-Year Predictions of the IMP Mission Orbit

Perturbation Model: Numerical Averaging-Lunar Point Mass

QUAD- | AVERAGING | CPU "
STEPSIZE | RATURE | INTERVAL | 350/91 inal e | Jai| [282] jaw| M| farg|
{DAYS) ORDER {2m (SEC) {103 KM (DEG) (DEG) (DEG} (DEG) (103 KM}
5 24 1 REFERENCE
1 24 1 a3 0.001 0.0002 - 0.01 0.30 1.07 -
1 16 1 57 0.006 0.0009 - 0.04 1.24 418 0.2
1 12 1 43 0.001 0.0601 - - 0.26 0.97 -
1 9 1 KX 0.006 0.0015 0.02 0.08 1.99 6.5 0.4
2 24 1 42 0.125 0.0096 0.05 0.52 15.2 48.6 2.2
2 16 1 27 0.143 0.0098 .05 0.54 15.8 50.8 23
2 12 1 22 0.081 0.0088 0.05 0.45 138 44.2 2.0
p 9 1 18 0.005 0.0002 0.01 0.43 10.7 338 2.1
Table 16. Accuracy Statistics for 3-Year Predictions of the IMP Mission Orbit
Perturbation Model: Numerical Averaging-Lunar Point Mass
QUAD- | AVERAGING R
STEPSIZE |RATURE { INTERVAL | 380/91 la| e iy 8] jaca] [l lgfpl
{DAYS) ORDER {2} (SEC) {103 KM} {DEG) ({DEG) (DEG) (DEG} {107 KM}
5 24 2 REFERENCE
1 24 2 82 0.001 0.0001 - 0.01 0.15 0.5 -
1 12 2 42 0.014 0.0003 - 0.02 0.48 15 0.1
1 9 2 32 0.25 0.0035 0.02 0.58 15.6 48.0 0.8
2 24 2 . 41 0.53 0.001 0.01 0.04 0.95 29 0.1
2 16 2 29 0.319 0.003 0.02 0.07 2.4 5.1 0.4
2 12 2 22 0.233 0.0035 0.04 0.2t B.O 265 0.6
Table 17, Accuracy and Cost Statistics for 14 Day Predictions of the £SSA-8 Orhit

I. Perturbation Model: Numerical Averaging-4 x 4 Gravity Model, Solar and Lunar Point Masses

INTEGRATION | INTEGRATION | QUADRATURE | STEP- TOTAL . Aa AN
ALGORITHM ORDER ORDER SIZE NUMBER OF {KM) =AM+ AQ + Aw
(HR} FORCE ' {DEGREES)
EVALUATIONS
PECE " 24 2 12100 REFERENGE
PECE 9 24 2 9000 007 002
PECE 9 12 2 4500 007 002
PECE g 12 8 1620 06 2.0
PECE ] 12 24 1250 06 5.0
PECE 7 12 24 950 1 4.75
PECE 9 12 48 UNSTABLE
PECE 5 12 48 775 13 5.9
PECE" 7 12 2 2436 a3 .02
PECE" 1 12 4 1286 027 .63

H, Perturbation

Model: Numerical Averaging-

4 x 0 Gravity Model, Solar and Lunar Point Masses

PECE 9 12 2 5220 REFERENCE
PECE 11 12 24 UNSTABLE
PECE 9 12 24 1020 0005 005
PECE 7 12 48 UNSTABLE
PECE 5 12 48 475 .0003 003 J
Table 18, Comparison of ESSA-8 State Vectors at 14 Days From Epoch
GRAVITY  |STEPSIZE} ITERA- X Y z AT
METHOD MODEL (SECt | TIONS RS (KM) (KM {KM) {KM)
HIGH PRECISION PREDICTION 4aX4 60 -395.2772 -2431.583 -7402.4749 14
HiGH PRECISION DC 4X4 60 10 A75 -396.2007 -2432.6012 -7402.0741 |REFERENCE
AVERAGED PREDICTION 4%4 7200 -395.1799 -2430.8783 -7400.3624 258
AVERAGED DC 4%4 7200 4 2.76 -395,1442 -2430.4700 -7400.0408 3.17
AVERAGED PREDICTION axg 7200 -394,8476 -2430.6275 -7400.2605 303
AVERAGED DC 4%0 7200 4 2.02 -396.6927 -2431.7530 -7399.7796 251
AVERAGED PREDICTION 4X0 43200 -194.7206 +2430.5253 -7400.3014 3.08
AVERAGED DC 4%X0 43200 4 2.02 -396.6929 -2431.7053 -7399.7797 252
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Table 19.

(a, Ao) = =23 sl
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=kp 55

-kg 35

" Note: If T - +1, the elements have the meaning of
Equation (B-1), IfI= -1, the elements have the meaning

of Equation (B-2),

Table 20. Partial Derivatives of Poéition
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Table 21. Partial Derivatives of the Equinoctial Ele-
ments With Respect to Velocity
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Figure 2. Comparison of Inclination Histories for the IMP-J Transfer Orbit

Perturbation Model: Numerical Averaging-Lunar Point Mass
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Figure 4. Equinoctial Coordinate Frame
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Figure 5. Retrograde Eguinoctial Coordinate Frame



