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ABSTRACT 

Over the last 20-30 years, the extended Kalman filter (EKF) has 
become the algorithm of choice in numerous nonlinear estimation 
and machine learning applications. These include estimating the 
state of a nonlinear dynamic system as well estimating parameters 
for nonlinear system identification (e.g., learning the weights of 
a neural network). The EKF applies the standard linear Kalman 
filter methodology to a linearization of the true nonlinear system. 
This approach is sub-optimal, and can easily lead to divergence. 
Julier et al. [I] proposed the unscented Kalman filter (UKF) as 
a derivative-free alternative to the extended Kalman filter in the 
framework of state-estimation. This was extended to parameter- 
estimation by Wan and van der Menve [2, 31. The UKF consis- 
tently outperforms the EKF in terms of prediction and estimation 
error, at an equal computational complexity of O ( L ~ ) ’  for gen- 
eral state-space problems. When the EKF is applied to parameter- 
estimation, the special form of the state-space equations allows 
for an (3(L2) implementation. This paper introduces the square- 
root unscented Kalman jilter (SR-UKF) which is also U ( L 3 )  for 
general state-estimation and U ( L 2 )  for parameter estimation (note 
the original formulation of the UKF for parameter-estimation was 
U(L3) ) .  In addition, the square-root forms have the added benefit 
of numerical stability and guaranteed positive semi-definiteness of 
the state covariances. 

1. INTRODUCTION 

The EKF has been applied extensively to the field of nonlinear es- 
timation for both state-estimation and parameter-estimation. The 
basic framework for the EKF (and the UKF) involves estimation 
of the state of a discrete-time nonlinear dynamic system, 

where x k  represent the unobserved state of the system, u k  is a 
known exogenous input, and Y k  is the observed measurement sig- 
nal. The process noise v k  drives the dynamic system, and the 
observation noise is given by n k .  The EKF involves the recursive 
estimation of the mean and covariance of the state under a Gaus- 
sian assumption. 

In contrast, parameter-estimation, sometimes referred to as 
system identification, involves determining a nonlinear mapping 
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‘ L  is the dimension of the state variable. 

Y k  = G ( X k , W ) ,  where x k  is the input, Y k  is the output, and 
the nonlinear map, G ( . ) ,  is parameterized by the vector w .  Typ- 
ically, a training set is provided with sample pairs consisting of 
known input and desired outputs, { X k ,  d k } .  The error of the ma- 
chine is defined as e k  = dk - G ( x k ,  w ) ,  and the goal of learning 
involves solving for the parameters w in order to minimize the ex- 
pectation of some given function of the error. While a number of 
optimization approaches exist (e.g., gradient descent and Quasi- 
Newton methods), parameters can be efficiently estimated on-line 
by writing a new state-space representation 

w k + l  = w k  + r k  (3) 
dk = G ( X k , W k )  + e k ,  (4) 

where the parameters w k  correspond to a stationary process with 
identity state transition matrix, driven by process noise r k  (the 
choice of variance determines convergence and tracking perfor- 
mance). The output d k  corresponds to a nonlinear observation on 
w k .  The EKF can then be applied directly as an efficient “second- 
order” technique for learning the parameters [4]. 

2. THE UNSCENTED KALMAN FILTER 

The inherent flaws of the EKF are due to its linearization approach 
for calculating the mean and covariance of a random variable which 
undergoes a nonlinear transformation. As shown in shown in [ l ,  
2, 31, the UKF addresses these flaws by utilizing a deterministic 
“sampling” approach to calculate mean and covariance terms. Es- 
sentially, 2L + 1, sigma points ( L  is the state dimension), are cho- 
sen based on a square-root decomposition of the prior covariance. 
These sigma points are propagated through the true nonlinearity, 
without approximation, and then a weighted mean and covariance 
is taken. A simple illustration of the approach is shown in Figure 1 
for a 2-dimensional system: the left plot shows the true mean and 
covariance propagation using Monte-Carlo sampling; the center 
plots show the results using a linearization approach as would be 
done in the EKF; the right plots show the performance of the new 
“sampling” approach (note only 5 sigma points are required). This 
approach results in approximations that are accurate to the third 
order (Taylor series expansion) for Gaussian inputs for all nonlin- 
earities. For non-Gaussian inputs, approximations are accurate to 
at least the second-order [l]. In contrast, the linearization approach 
of the EKF results only in first order accuracy. 

The full UKF involves the recursive application of this “sam- 
pling” approach to the state-space equations. The standard UKF 
implementation is given in Algorithm 2.1 for state-estimation, and 
uses the following variable definitions: {Wi} is a set of scalar 
weights(Wim) = X / ( L + X )  ,W$) = A/ (L+X)+ (1 -a2+P)  
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Figure 1: Example of mean and covariance propagation. a) actual, 
b) first-order linearization (EKF), c) new "sampling" approach (UKF). 

, w p  = wy = 1/{2(L + A)} i = 1, ... ,2L) .  x = 
L(a2 - 1) and q = ,/m are scaling parameters. The con- 
stant a determines the spread of the sigma points around i and 
is usually set to l e  - 4 5 a 5 1. p is used to incorporate 
prior knowledge of the distribution of x (for Gaussian distribu- 
tions, p = 2 is optimal). Also note that we define the linear alge- 
bra operation of adding a column vector to a matrix, i.e. A f U 

as the addition of the vector to each column of the matrix. The 
superior performance of the UKF over the EKF has been demon- 
strated in a number of applications [I ,  2, 31. Furthermore, unlike 
the EKF, no explicit derivatives (i.e.,  Jacobians or Hessians) need 
to be calculated. 

3. EFFICIENT SQUARE-ROOT IMPLEMENTATION 

The most computationally expensive operation in the UKF cor- 
responds to calculating the new set of sigma points at each time 
update. This requires taking a matrix square-root of the state co- 
variance matrix2, P E W L x  ', given by S S T  = P. An efficient 
implementation using a Cholesky factorization requires in general 
(1(L3/6)  computations [5]. While the square-root of P is an in- 
tegral part of the UKF, it is still the full covariance P which is 
recursively updated. In the SR-UKF implementation, S will be 
propagated directly, avoiding the need to refactorize at each time 
step. The algorithm will in general still be O(L3) ,  but with im- 
proved numerical properties similar to those of standard square- 
root Kalman filters [6 ] .  Furthermore, for the special state-space 
formulation of parameter-estimation, an o(L') implementation 
becomes possible. 

The square-root form of the UKF makes use of three powerful 
linear algebra techniques3, QR decomposition, Cholesky factor up- 
dating and eficient least squares, which we briefly review below: 

0 QR decomposition. The QR decomposition or factorization 
of a matrix A E W L X N  is given by, AT = QR, where 
Q E WNX is orthogonal, R E W N x L  is upper triangu- 
lar and N 2 L. The upper triangular part of R ,  R, is 
the transpose of the Cholesky factor of P = AAT, i .e.,  

2For notational clarity, the time index k has been omitted. 
3See [5] for theoretical and implementation details. 

nitialize with: 

a0 = Qxol Po = Q(X0 - iO)(XO - (5) 

Tor k E (1,. . . , m}, 

Zalculate sigma points: 

Xk-i = [&-I ak-i + q & G  h-i - qJpk-;]  (6) 

rime update: 

R = ST, such that RTR = AAT. We use the shorthand 
notation qr(.} to donate a QR decomposition of a matrix 
where only R is retumed. The computational complexity 
of a QR decomposition is O(NL2).  Note that performing a 
Cholesky factorization directly on P = AAT is O ( L 3 / 6 )  

0 Cholesky factor updating. If S is the original Cholesky fac- 
tor of P = AAT, then the Cholesky factor of the rank- 
1 update (or downdate) P f &uuT is denoted as S = 
cholupdate{S, U, *v}. If U is a matrix and not a vector, 
then the result is A4 consecutive updates of the Cholesky 
factor using the M columns of U. T h s  algorithm (available 
in Matlab as cholupdate) is only O ( L 2 )  per update. 

(AAT)x = ATb also corresponds to the solution of the 
overdetermined least squares problem Ax = b. This can 
be solved efficiently using a QR decomposition with pivot- 
ing (implemented in Matlab's '/' operator). 

The complete specification of the new square-root filters is 
given in Algorithm 3.1 for state-estimation and 3.2 for paramater- 

pius O ( N L ~ )  to form A A ~ .  

0 Eficient least squares. The solution to the equation 
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estimation. Below we describe the key parts of the square-root 
algorithms, and how they contrast with the stardard implementa- 
tions. 

Square-Root State-Estimation: As in the original UKF, the 
filter is initialized by calculating the matrix square-root of the state 
covariance once via a Cholesky factorization (Eqn. 16). However, 
the propagted and updated Cholesky factor is then used in subse- 
quent iterations to directly form the sigma points. In Eqn. 20 the 
time-update of the Cholesky factor, S-, is calculated using a QR 
decompostion of the compound matrix containing the weighted 
propagated sigma points and the matrix square-root of the addi- 
tive process noise covariance. The subsequent Cholesky update 
(or downdate) in Eqn. 21 is necessary since the the zero'th weight, 
W,'", may be negative. These two steps replace the time-update 
of P- in Eqn. 9, and is also 0 ( L 3 ) .  

The same two-step approach is applied to the calculation of 
the Cholesky factor, S 9 ,  of the observation-error covariance in 
Eqns. 24 and 25. This step is O ( L M 2 ) ,  where M is the obser- 
vation dimension. In contrast to the way the Kalman gain is cal- 
culated in the standard UKF (see Eqn. 12), we now use two nested 
inverse (or least squares) solutions to the following expansion of 
Eqn. 12, x k ( S 9 , s F k )  = PXLYk. Since SF is square and trian- 
gular, efficient "back-substitutions'' can be used to solve for 
directly without the need for a matrix inversion. 

Finally, the posterior measurement update of the Cholesky fac- 
tor of the state covariance is calculated in Eqn. 29 by applying M 
sequential Cholesky downdates to S i .  The downdate vectors are 
the columns of U = / c k   SF^. This replaces the posterior update of 
P k  in Eqn. 14, and is also 0 ( L M 2 ) .  

algorithm follows a similar framework as that of the state-estimation 
square-root UKF. However, an 0 ( M L 2 )  algorithm, as opposed to 
O ( L 3 ) ,  is possible by taking advantage of the linear state transi- 
tion function. Specifically, the time-update of the state covariance 
is given simply by PZk = Pw,-, + R L - l .  Now, if we apply an 
exponential weighting on past data4, the process noise covariance 
is given by RL = (7-' - 1)PWk, and the time update of the state 
covariance becomes, 

(15) 

This translates readily into the factored form, S i ,  = y-1/2Sw,-I 
(see Eqn. 32), and avoids the costly 0 ( L 3 )  QR and Cholesky 
based updates necessary in the state-estimation filter. 

Square-Root Parameter-Estimation: The parameter-estimation 

- 1  p- W k  = P W k - ,  + ( y - l  - 1)PWk-] = y p W k - l '  

4. EXPERIMENTAL RESULTS 
The improvement in error performance of the UKF over that of the 
EKF for both state and parameter-estimation is well documented 
[ I ,  2, 31. The focus of this section will be to simply verify the 
equivalent error performance of the UKF and SR-UKF, and show 
the reduction in computational cost achieved by the SR-UKF for 
parameter-estimation. Figure 2 shows the superior performance of 
UKF and SR-UKF compared to that of the EKF on estimating the 
Mackey-Glass-30 chaotic time series corrupted by additive white 
noise (3dB SNR). The error performance of the SR-UKF and UKF 
are indistinguishable and are both superior to the EKE The com- 
putational complexity of all three filters are of the same order but 

4This is identical to the approach used in weighted recursive least 
squares (W-RLS). y is a scalar weighting factor chosen to be slightly less 
than I ,  i.e. y = 0.9995. 

Initialize with: 

20 = 4x03 So = chol { ~ ( X O  - ZO)(XO - Z O ) ~ ] }  (16) 

Fork E (1,. . . , CO}, 

Sigma point calculation and time update: 

X k - 1  = [ k k - 1  k k - 1  + qsk k k - 1  - VSk] (17) 
X k l k - I  F [ X k - l i u k - l ]  (18) 

Y k l k - 1  = H I X k l k - l ]  

2 L  

9; = W i ( m ) Y i , k l k - l  
i = O  

Measurement update equations: 

where R"=process noise cov., R"=measurement noise cov. 
Algorithm 3.1: Square-Root UKF for state-estimation. 

the SR-UKF is about 20% faster than the UKF and about 10% 
faster than the EKE 

The next experiment shows the reduction in computational 
cost achieved by the square-root unscented Kalman filters and how 
that compares to the computational complexity of the EKF for 
parameter-estimation. For th s  experiment, we use an EKF, UKF 
and SR-UKF to train a 2-12-2 MLP neural network on the well 
known Mack~y-Robot-Arm~ benchmark problem of mapping the 
joint angles of a robot arm to the Cartesian coordinates of the 
hand. The learning curves (mean square error (MSE) vs. learn- 
ing epoch) of the different filters are shown in Figure 3. Figure 4 
shows how the computational complexity of the different filters 
scale as a function of the number of parameters (weights in neural 
network). While the standard UKF is U ( L 3 ) ,  both the EKF and 
SR-UKF are 0 ( L 2 ) .  

http://wol.ra.phy.cam.ac.uk/mackay 
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Sd, = cholupdate s d k  , D 0 . k  - d k  , w~”} (37) { 
2L 

p w k d k  = W , ( ‘ ) [ w a , k l k - l  - W ; ] [ D . l ) z , k l k - l  - d k I T  (38) 
1=0 

K k  = ( p w k d k / s $ k ) / s d k  (39: 

6 ’ k  = 6’; f K k ( d k  - d k )  (40: 
U = Kksd, (411 

S,, = cholupdate { S i k  , U , -1} (42: 

where Re=measurement noise cov (tlus can be set to an arbitrary 
value, e g.. . 5 1 )  

Algorithm 3.2: Square-Root UKF for parameter-estimation. 
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Figure 2: Estimation of the Mackey-Glass chaotic time-series with 
the EKF, UKF and SR-UKF. 

5. CONCLUSIONS 

The UKF consistently performs better than or equal to the well 
known EKF, with the added benefit of ease of implementation in 

Learning Curves : NN parameter estimation 
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Figure 3: Learning curves for Mackay-Robot-Arm neural network 
parameter-estimation problem. 
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Figure 4: Computational complexity (flops/epoch) of EKF, UKF and 
SR-UKF for parameter-estimation (Mackay-Robot-Arm problem). 

that no analytical derivatives (Jacobians or Hessians) need to be 
calculated. For state-estimation, the UKF and EKF have equal 
complexity and are in general U ( L 3 )  . In this paper, we introduced 
square-root forms of the UKF. The square-root UKF has better nu- 
merical properties and guarantees positive semi-definiteness,of the 
underlying state covariance. In addition, for parameter-estimation 
an efficient U ( L 2 )  implementation is possible for the square-root 
form, which is again of the same complexity as efficient EKF 
parameter-estimation implementations. In this light, the SR-UKF 
is the logical replacement for the EKF in all state and parameter- 
estimation applications. 

6. REFERENCES 

[ I ]  S. J. Julier and J. K. Uhlmann, “A New Extension of the 
Kalman Filter to Nonlinear Systems,” in Proc. of AeroSense: 
The 1 Ith Int. Symp. on Aerospace/Defence Sensing, Simirla- 
tiori and Controls., 1997. 

[21 E. Wan, R. van der Merwe, and A.  T. Nelson, “Dual Estima- 
tion and the Unscented Transformation,” in Neural Irfornm- 
tion Processing Systems 12. 2000, pp. 666-672, MIT Press. 

[3] E. A. Wan and R. van der Merwe, “The Unscented Kalman 
Filter for Nonlinear Estimation,” in Proc. of lEEE Svrnposiurii 
2000 (AS-SPCC), Lake Louise, Alberta, Canada, Oct. 2000. 

[4] G.V. Puskorius and L.A. Feldkamp, “Decoupled Extended 
Kalman Filter Training of Feedforward Layered Networks,” 
in IJCNN, 1991, vol. I ,  pp. 771-777. 

[5]  W. H. Press, S. A.  Teukolsky. W. T. Vetterling, and B. P. Flan- 
nery, Numerical Recipes in C : The Art of Scientific Coniput- 
ing, Cambridge University Press, 2 edition, 1992. 

[6] A.  H. Sayed and T. Kailath, “A State-Space Approach to 
Adaptive RLS Filtering,’’ IEEE Sig. Proc. Mag., pp. 18-60, 
July 1994. 

3464 


