Kalman Filter not converging [recovered]

I posted a similar question in another post.

which I think is open to the public.

I modified the decorate method in the KalmanEstimatorUtil and passed the unnormalized covariance matrix. I think this is alright.
I am using only TDOA measurements. The filter stabilizes with the changes.

Since most of the Kalman filter implementation is hidden, it is possible to create another method to create a MeasurementDecorate class instance in KalmanEstimatorUtil class.

	 public static MeasurementDecorator decorateUnscented(final ObservedMeasurement<?> observedMeasurement,
             final AbsoluteDate referenceDate) {

		// Normalized measurement noise matrix contains 1 on its diagonal and correlation coefficients
		// of the measurement on its non-diagonal elements.
		// Indeed, the "physical" measurement noise matrix is the covariance matrix of the measurement

		final RealMatrix covariance;
		if (observedMeasurement.getMeasurementType().equals(PV.MEASUREMENT_TYPE)) {
			// For PV measurements we do have a covariance matrix and thus a correlation coefficients matrix
			final PV pv = (PV) observedMeasurement;
			covariance =MatrixUtils.createRealMatrix(pv.getCovarianceMatrix());
			// MatrixUtils.createRealMatrix(pv.getCorrelationCoefficientsMatrix());
			
			} else if (observedMeasurement.getMeasurementType().equals(Position.MEASUREMENT_TYPE)) {
			// For Position measurements we do have a covariance matrix and thus a correlation coefficients matrix
			final Position position = (Position) observedMeasurement;
			covariance = MatrixUtils.createRealMatrix(position.getCovarianceMatrix());
			//covariance = MatrixUtils.createRealMatrix(position.getCorrelationCoefficientsMatrix());
			} else {
			// For other measurements we do not have a covariance matrix.
			// Thus the correlation coefficients matrix is an identity matrix.
			covariance = MatrixUtils.createRealIdentityMatrix(observedMeasurement.getDimension());
			final double[] sigma = observedMeasurement.getTheoreticalStandardDeviation();
			for(int i=0;i<sigma.length;i++) {
				covariance.setEntry(i, i, sigma[i]*sigma[i]);
				
			}

			}
		
		return new MeasurementDecorator(observedMeasurement, covariance, referenceDate);
	 }

In UnscentedKalmanEstimator class the estimationStep method has to be modified accordingly.

  public Propagator[] estimationStep(final ObservedMeasurement<?> observedMeasurement) {
    	final MeasurementDecorator decoratedMeasurement = KalmanEstimatorUtil.decorateUnscented(observedMeasurement, referenceDate);
    	
        final ProcessEstimate estimate = filter.estimationStep(decoratedMeasurement);
        processModel.finalizeEstimation(observedMeasurement, estimate);
        if (observer != null) {
            observer.evaluationPerformed(processModel);
        }
        return processModel.getEstimatedPropagators();
    }

I think this is correct. But not clear how using non-normalized covariance will affect Hipparchus UKF.